When ΔG° is the change in Gibbs free energy
So according to ΔG° formula:
ΔG° = - R*T*(㏑K)
here when K = [NH3]^2/[N2][H2]^3 = Kc
and Kc = 9
and when T is the temperature in Kelvin = 350 + 273 = 623 K
and R is the universal gas constant = 8.314 1/mol.K
So by substitution in ΔG° formula:
∴ ΔG° = - 8.314 1/ mol.K * 623 K *㏑(9)
= - 4536
Answer:
Atomic number of this isotope = 77
Explanation:
Given that,
Mass number = 193
No of neutrons = 116
We need to find the atomic no of this isotope.
We know that,
Atomic mass = No of protons + No. of neutrons
Also, atomic no = no of protons
So,
Atomic mass = atomic no + No. of neutrons
⇒ Atomic no = Atomic mass - no of neutrons
Atomic no = 193 - 116
Atomic no = 77
Hence, 77 is the atomic no of the isotope.
<span>atomic weights: Al = 26.98, Cl = 35.45
In this reaction; 2Al = 53.96 and 3Cl2 = 212.7
Ratio of Al:Cl = 53.96/212.7 = 0.2537 that is approximately four times the mass Cl is needed.
Step 2:
(a) Ratio of Al:Cl = 2.70/4.05 = 0.6667
since the ratio is greater than 0.2537 the divisor which is Cl is not big enough to give a smaller ratio equal to 0.2537.
so Cl is limiting
(b)since Cl is the limiting reactant 4.05g will be used to determine the mass of AlCl3 that can be produced.
From Step 1:
212.7g of Cl will produce 266.66g AlCl3
212.7g = 266.66g
4.05g = x
x = 5.08g of AlCl3 can be produced
(c)
Al:Cl = 0.2537
Al:Cl = Al:4.05 = 0.2537
mass of Al used in reaction = 4.05 x 0.2537 = 1.027g
Excess reactant = 2.70 - 1.027 = 1.67g
King Leo · 9 years ago</span>
Answer:
The mass of the nucleus is almost the same as the atom because a majority of the mass of an atom is stored in the nucleus.
The volume of an atom is larger than the nucleus. The nucleus is a tiny, concentrated area inside of the atom. Atoms are mostly empty space inside.
Explanation:
Answer: C.) It burns and causes lung cancer