Answer:
= 331.81 g
Explanation:
Molarity is calculated by the formula;
Molarity = Moles/volume in liters
Therefore;
Moles = Molarity ×Volume in liters
= 0.35 M × 1.575 L
= 0.55125 Moles
But; Molar mass of Ba3(PO4)2 is 601.93 g/mol
Thus;
Mass = 0.55125 moles × 601.93 g/mol
<u>= 331.81 g</u>
Answer:
During photosynthesis, plants absorb carbon dioxide and sunlight to create fuel—glucose and other sugars—for building plant structures. This process forms the foundation of the fast (biological) carbon cycle.
The Slow Carbon Cycle. ... Atmospheric carbon combines with water to form a weak acid—carbonic acid—that falls to the surface in rain. The acid dissolves rocks—a process called chemical weathering—and releases calcium, magnesium, potassium, or sodium ions.
Um, I think it’s: k is potassium and F is fluorine so potassium Fluoride
Answer:
0.0457 M
Explanation:
The reaction that takes place is:
- 2HBr + Ca(OH)₂ → CaBr₂ + 2H₂O
First we<u> calculate how many moles of acid reacted</u>, using the <em>HBr solution's concentration and volume</em>:
- Molarity = Moles / Volume
- Molarity * Volume = Moles
- 0.112 M * 12.4 mL = 1.389 mmol HBr
Now we <u>convert HBr moles to Ca(OH)₂ moles</u>, using the stoichiometric ratio:
- 1.389 mmol HBr *
= 0.6944 mmol Ca(OH)₂
Finally we <u>calculate the molarity of the Ca(OH)₂ solution</u>, using the <em>given volume and calculated moles</em>:
- 0.6944 mmol Ca(OH)₂ / 15.2 mL = 0.0457 M
The correct answer is (C) in through the pores and out through the osculum