260 miles with 12 gallons of gas
260 miles/12 gallons=21.6667 miles/1 gallon
286 miles/(21.6667 miles/1 gallon)=13.2 gallons of gas
Assuming that the reaction from A and C to AC5 is only
one-step (or an elementary reaction) with a balanced chemical reaction of:
<span>A + 5 C ---> AC5 </span>
Therefore the formation constant can be easily calculated
using the following formula for formation constant:
Kf = product of products concentrations / product of reactants
concentration
<span>Kf = [AC5] / [A] [C]^5 </span>
---> Any coefficient from the balanced chemical
reaction becomes a power in the formula
Substituting the given values into the equation:
Kf = 0.100 M / (0.100 M) (0.0110 M)^5
Kf = 6,209,213,231
or in simpler terms
<span>Kf = 6.21 * 10^9 (ANSWER)</span>
Answer:
In my opinion, I think its 2
Explanation:
Answer:
D. The equipment needed to accommodate the high temperature and pressure will be expensive to produce.
Explanation:
Hello!
In this case, for the considered reaction, it is clear it is an exothermic reaction because it produces energy; and therefore, the higher the temperature the more reactants are yielded as the reverse reaction is favored. Moreover, since the effect of pressure is verified as favoring the side with fewer moles; in this case the products side (2 moles of ammonia).
In such a way, the high pressure favors the formation of ammonia whereas the high temperature the formation of hydrogen and nitrogen and therefore, option A is ruled out. Since the high pressure shifts the reaction rightwards and the high temperature leftwards, we would not be able to know whether the reaction has ended or not because it will be a "go and come back" process, that is why B is also discarded. Now, since hydrogen and nitrogen would be the "wastes", we discard C because they are not toxic. That is why the most accurate answer would be D. because it is actually true that such equipment is quite expensive.
Best regards!