<span>Hudson Bay drainage basin</span>
The vertical component of force exerted by the hi.nge on the beam will be,142.10N.
To find the answer, we need to know more about the tension.
<h3>
How to find the vertical component of the force exerted by the hi.nge on the beam?</h3>
- Let's draw the free body diagram of the system.
- To find the vertical component of the force exerted by the hi.nge on the beam, we have to balance the total vertical force to zero.

- To find the answer, we have to find the tension,

- Thus, the vertical component of the force exerted by the hi.nge on the beam will be,

Thus, we can conclude that, the vertical component of force exerted by the hi.nge on the beam will be,142.10N.
Learn more about the tension here:
brainly.com/question/28106868
#SPJ1
Answer:
d. conduction
Explanation:
Conduction involves the transfer of electric charge or thermal energy due to the movement of particles. When the conduction relates to electric charge, it is known as electrical conduction while when it relates to thermal energy, it is known as heat conduction.
In the process of heat conduction, thermal energy is usually transferred from fast moving particles to slow moving particles during the collision of these particles. Also, thermal energy is typically transferred between objects that has different degrees of temperature and materials (particles) that are directly in contact with each other but differ in their ability to accept or give up electrons.
Any material or object that allow the conduction (transfer) of electric charge or thermal energy is generally referred to as a conductor. Conductors include metal, steel, aluminum, copper, frying pan, pot, spoon etc.
In conclusion, conduction typically involves the transfer of heat energy by direct contact between two or more conductors such as a pot and electric cooker.
Answer:
a. Acceleration, a = 1.88 m/s²
b. Time, t = 7.87 seconds.
Explanation:
Given the following data;
Initial velocity, U = 14.5m/s
Final velocity, V = 29.3m/s
Distance, S = 172m
a. To find the acceleration of the speedboat;
We would use the third equation of motion;
V² = U² + 2aS
Substituting into the formula
29.3² = 14.5² + 2a*172
858.49 = 210.25 + 344a
344a = 858.49 - 210.25
344a = 648.24
a = 648.24/344
Acceleration, a = 1.88 m/s²
b. To find the time;
We would use the first equation of motion;
V = U + at
29.3 = 14.5 + 1.88t
1.88t = 29.3 - 14.5
1.88t = 14.8
Time, t = 14.8/1.88
Time, t = 7.87 seconds.
Answer:
E=0
Explanation:
The electric field at the centre of the shell is zero because total enclosed charge in the nucleus is zero