Answer:
a) 147.95 Mpc
Explanation:
Using Hubble's formula

where;
v = radical velocity
= Hubble's constant
d = distance
Given that:
The average radial velocity of galaxies in the Hercules cluster v = 10,800 km/s
Also using
= 73 km/s/ Mpc ; we make distance d the subject of the formula:
Then distance d can be written as:


d = 147.95 Mpc
b)
Now, if the Hubble constant had a smaller value, then for a given velocity the distance to the galaxy will increase because distance d is inversely proportional to
i.e
d ∝ 
The total momentum before and after the collision must be conserved.
The total momentum before the collision is:

where m1 and m2 are the masses of the two players, and

and

their initial velocities. Both are considered with positive sign, because the two players are running toward the same direction.
The final momentum is instead

because now the two players are moving together with a total mass of (m1+m2) and final speed vf.
By requiring that the momentum is conserved

we can calculate vf, the post-collision speed:


and the direction is the same as the direction of the players before the collision.
E=ERBIUM
L=LITHIUM
E=EINSTEINIUM
M=MAGNESIUM
E=EUROPIUM
N=NITROGEN
T=TITANIUM
S=SULPHURDIOXIDE
It should be Constant speed. The line goes straight & doesn’t change within the graph.