Answer:
Explanation:
a )
Energy stored by left spring when compressed = 1/2 k x²
= .5 x 10 x .02² = .002 J .
Let compression in right spring = y
energy stored to right spring = 1/2 k y²
1/2 k y² = 0.002
.5 x 20 x y² = 0.002
y = .01414 m
= 1.4 cm
Answer:
14.7 m/s.
Explanation:
From the question given above, the following data were obtained:
Time (t) = 1.5 s
Acceleration due to gravity (g) = 9.8 m/s².
Height = 11.025 m
Final velocity (v) = 0 m/s
Initial velocity (u) =?
We, can obtain the initial velocity of the penny as follow:
H = ½(v + u) t
11.025 = ½ (0 + u) × 1.5
11.025 = ½ × u × 1.5
11.025 = u × 0.75
Divide both side by 0.75
u = 11.025/0.75
u = 14.7 m/s
Therefore, the penny was travelling at 14.7 m/s before hitting the ground.
Answer:
=3.5 m/s
Explanation:
y = x tanθ - 1/2 g x² / (u²cos²θ )
y = 0.25 , x = 0.5, θ = 40°
.25 = .50 tan40 - .5 x 9.8x x²/ u²cos²40
.25 = .42 - 2.0875/u²
u = 3.5 m / s.
Answer: The energy absorbed by the reaction from the water is 996 Joules.
Explanation:
Energy absorbed by the reaction or energy lost by the water to the reaction,Q.
Mass of the the reaction ,m = 60 g
Specific heat of water = c = 4.15 J\g ^oC
Change is temperature=

Negative sigh indicates that energy was given by the water to the reaction.
The energy absorbed by the reaction from the water is 996 Joules.
Since the two taped poles of the magnets labeled A and B attracts one to each other, we know that the two taped poles are oppsosite.
So, you can predict with total certainty that when she brings the taped end of the third magnet (magnet C) near each of the first two magntes, in one case they will attract each other and in the other case they will repele mutually.
You are certain of that because, since the taped poles of the first two magnets are opposite, the pole of the third magnet has to be equal to one of the two first taped poles and opposite to the other of the two firest taped poles.