Answer:
Pressure is defined as the force divided by the area perpendicular to the force over which the force is applied, or. P=FA. A given force can have a significantly different effect depending on the area over which the force is exerted Pressure the effect of a force applied to a surface is a derived unit, obtained from combining base units. The unit of pressure in the SI system is the pascal (Pa), defined as a force of one Newton per square meter. The conversion between atm, Pa, and torr is as follows: 1 atm = 101325 Pa = 760 torr.
Explanation:
Pressure and force are related, and so you can calculate one if you know the other by using the physics equation, P = F/A. Because pressure is force divided by area, its meter-kilogram-second (MKS) units are newtons per square meter, or N/m2. If you convert an atmosphere to pounds per square inch, it's about 14.7 psi.
The velocity of the target and arrow after collision is 6.67m/s
<u>Explanation:</u>
Given:
Mass of arrow, mₐ = 415g
Speed of arrow, vₐ = 68.5m/s
Mass of the target, mₓ = 3.3kg = 3300g
speed of the target, vₓ = -1.1m/s (Because the target moves in opposite direction
Velocity of the target and arrow after collision, vₙ = ?
Applying the conservation of momentum,
mₐvₐ + mₓvₓ = (mₐ+mₓ) vₙ
415 X 68.5 + 3300 X -1.1 = (415+3300) X vₙ
28427.5 - 3630 = 3715 X vₙ
24797.5 = 3715 X vₙ
vₙ = 6.67m/s
Therefore, the velocity of the target and arrow after collision is 6.67m/s
If the 5,500 J of sound and light is the ONLY useful output
from the phone, then the phone's efficiency is
(5,500J / 10,000J) = 0.55 = 55% .
But the test engineer forgot one little minor almost insignificant detail.
As a test engineer myself, I'd say that he needs to turn in his laptop
and soldering iron, and think about changing his career to a job for
which he may be better suited, like 8 hours a day in a highway toll-booth.
What about that little radio transmitter and receiver inside the phone,
that maintain digital RF communication with the nearest cell tower ?
Without that microscopic radio transceiver ... plus 30 or 40 apps
that are always running unless you shut them off ... the device in your
pocket is essentially a flat rock with one side that sometimes glows.
The magnitude of acceleration is (change in speed) / (time for the change).
Change in speed = (speed at the end) - (speed at the beginning) =
(16 m/s) - (0) = 16 m/s .
Time for the change = 4 s .
Magnitude of acceleration = (16 m/s) / (4 s) = 4 m/s per sec = 4 m/s² .