1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AfilCa [17]
3 years ago
8

How long does it take for the earth to make this trip

Physics
1 answer:
azamat3 years ago
6 0
The earth takes 365 days to travel around the sun in a full rotation.
You might be interested in
What does bubble universe mean
s344n2d4d5 [400]

Answer:

<h3>Our universe may live in one bubble that is sitting in a network of bubble universes in space. ... The concept is known as a "parallel universe," and is a facet of the astronomical theory of the multiverse. The idea is pervasive in comic books, video games, television and movies.</h3>
5 0
2 years ago
a plane travels 204 km, northeast in 15.0 minutes. It also increases elevation by 1.6 km, upward in the same amount of time. Wha
LUCKY_DIMON [66]

Answer:

230 m/s northeast, 1.8 m/s up

Explanation:

204 kilometres = 204000 metres

15.0 minutes = 900 seconds

Velocity = Distance / Time

= 204000 / 900

= 230 m/s northeast (to 2 sf.)

1.6km = 1600 metres

Velocity = 1600 / 900

= 1.8 m/s up (to 2 sf.)

Read more on Brainly.com - brainly.com/question/13863590#readmore

5 0
3 years ago
Read 2 more answers
Planet 1 orbits Star 1 and Planet 2 orbits Star 2 in circular orbits of the same radius. However, the orbital period of Planet 1
hichkok12 [17]

Answer:

The mass of Star 2 is Greater than the mass of Start 1. (This, if we suppose the masses of the planets are much smaller than the masses of the stars)

Explanation:

First of all, let's draw a free body diagram of a planet orbiting a star. (See attached picture).

From the free body diagram we can build an equation with the sum of forces between the start and the planet.

\sum F=ma

We know that the force between two bodies due to gravity is given by the following equation:

F_{g} = G\frac{m_{1}m_{2}}{r^{2}}

in this case we will call:

M= mass of the star

m= mass of the planet

r = distance between the star and the planet

G= constant of gravitation.

so:

F_{g} =G\frac{Mm}{r^{2}}

Also, if the planet describes a circular orbit, the centripetal force is given by the following equation:

F_{c}=ma_{c}

where the centripetal acceleration is given by:

a_{c}=\omega ^{2}r

where

\omega = \frac{2\pi}{T}

Where T is the period, and \omega is the angular speed of the planet, so:

a_{c} = ( \frac{2\pi}{T})^{2}r

or:

a_{c}=\frac{4\pi^{2}r}{T^{2}}

so:

F_{c}=m(\frac{4\pi^{2}r}{T^{2}})

so now we can do the sum of forces:

\sum F=ma

F_{g}=ma_{c}

G\frac{Mm}{r^{2}}=m(\frac{4\pi^{2}r}{T^{2}})

in this case we can get rid of the mass of the planet, so we get:

G\frac{M}{r^{2}}=(\frac{4\pi^{2}r}{T^{2}})

we can now solve this for T^{2} so we get:

T^{2} = \frac{4\pi ^{2}r^{3}}{GM}

We could take the square root to both sides of the equation but that would not be necessary. Now, the problem tells us that the period of planet 1 is longer than the period of planet 2, so we can build the following inequality:

T_{1}^{2}>T_{2}^{2}

So let's see what's going on there, we'll call:

M_{1}= mass of Star 1

M_{2}= mass of Star 2

So:

\frac{4\pi^{2}r^{3}}{GM_{1}}>\frac{4\pi^{2}r^{3}}{GM_{2}}

we can get rid of all the constants so we end up with:

\frac{1}{M_{1}}>\frac{1}{M_{2}}

and let's flip the inequality, so we get:

M_{2}>M_{1}

This means that for the period of planet 1 to be longer than the period of planet 2, we need the mass of star 2 to be greater than the mass of star 1. This makes sense because the greater the mass of the star is, the greater the force it applies on the planet is. The greater the force, the faster the planet should go so it stays in orbit. The faster the planet moves, the smaller the period is. In this case, planet 2 is moving faster, therefore it's period is shorter.

6 0
3 years ago
Although it shouldn’t have happened, on a dive i fail to watch my spg and run out of air. if my buddy is close by, my best optio
leva [86]

Answer:

B ) Ascend using my buddy alternative air source / make an emergency Ascent

Explanation:

From the description it can be seen his buddy is close by of which he can easily use the alternative air source. Also we can see that he is closer to the water surface than his buddy, of which controlled emergency swimming ascent is highly favourable in this condition.

5 0
3 years ago
Read 2 more answers
A particular car has a weight of 9500 N. What is the mass of the car? 9500 kg 95000 kg 950 kg 2160 kg
Ivenika [448]

950kg. It is W=mg. therefore, mass= W/g which is W/10

=9500/10

=950

8 0
3 years ago
Other questions:
  • Which of the following happens to an object in uniform circular motion?
    15·1 answer
  • What is a superpositional principle
    7·2 answers
  • A long coaxial cable consists of an inner cylindrical conductor with radius a and an outer coaxial cylinder with inner radius b
    12·1 answer
  • What layer of the atmosphere is made mostly of hydrogen and helium?
    8·1 answer
  • A car goes round a curve of radius 48m, the road is banked at an angle of 15 with the horizontal,at what maximum speed may the c
    7·1 answer
  • The term relative intensity is used to denote the amount of energy expended per minute.
    5·1 answer
  • The weight of an object is the force pulling the object:
    13·1 answer
  • If the motor M rotates in the direction shown by the arrow as illustrated in the diagram below, what is going on? A. 1 and 2 are
    8·1 answer
  • What is the relationship between the mass of the objects and the force exerted?
    8·1 answer
  • Question 2
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!