The total charge on the interior of the conductor is zero.
The total charge on the exterior of the conductor is 8q.
<h3>
Total charge on the interior</h3>
Due to large number of electrons available for conduction in a conductor, most of the electrons moves to surface leaving zero net charge inside the conductor.
Thus, the total charge on the interior of the conductor is zero.
<h3>T
otal charge on the exterior</h3>
The total charge on the exterior of the conductor is calculated as follows;
Q = q + 7q = 8q
Thus, the total charge on the exterior of the conductor is 8q.
Learn more about net charge on interior and exterior of conductors here: brainly.com/question/14653264
Answer:
T = 1.766(M-m) Nm where M and m are the 2 masses of the objects
Explanation:
Let m and M be the masses of the 2 objects and M > m so the system would produce torque and rotational motion on the pulley. Force of gravity that exert on each of the mass are mg and Mg. Since Mg > mg, the net force on the system is Mg - mg or g(M - m) toward the heavier mass.
Ignore friction and string mass, and let g = 9.81 m/s2, the net torque on the pulley is the product of net force and arm distance to the pivot point, which is pulley radius r = 0.18 m
T = Fr = g(M - m)0.18 = 0.18*9.81(M - m) = 1.766(M-m) Nm
To get x on its own, you times the 3 over to the other side so the 3 cancels out on the LHS.
~ x greater than or equal to -18
(C)
Answer:
a=2.378 m/s^2
Explanation:
a=Δv/Δt------eq(1)
Δv=Vf-Vi=120 km/h-0 km/h=120 km/h
or Δv=33.3 m/sec
or time=t=14s
putting values in eq(1)
a=33.3/14
a=2.378 m/s^2