Definitely ball and basket
The object will move if the forces are unbalanced.
Newtons second tells you that when a net force (the unbalanced force) is applied to and object it will produce an acceleration (movement) in direct proportion to the force and in inverse proportion to the mass of the object.
Answer:
Explanation:
Volume of the insulating shell is,

Charge density of the shell is,

Here, 

B)
The electric field is 
For 0 <r<R the electric field is zero, because the electric field inside the conductor is zero.
C)
For R <r <2R According to gauss law

substitute 

D)
The net charge enclosed for each r in this range is positive and the electric field is outward
E)
For r>2R
Charge enclosed is zero, so electric field is zero
Answer:
A=50mΩ
B≅50mΩ
Explanation:
A) To answer this question we have to use the Current Divider Rule. that rule says:
(1)
Itotal represents the new maximun current, 50mA, Ix is the current going through the 100 ohms resistor, and Req. is the equivalent resitor.
We now have a set of two resistor in parallel, so:
(2)
where R1 is the resitor we have to calculate, and R2 is the 100 ohms resistor (25 uA).
substituting and rearranging (2)
(3)
Now substituting (3) in (1).

solving this, The value of R1 is: 50mΩ
This value of R1 will guaranty that the ammeter full reflection willl be at 50mA.
Given that R2 (100ohm) it too much bigger than 50mΩ, the equivalent resistor will tend to 50mΩ
If you substitude this values on (2) Req. will be 49.97 mΩ.
Answer:
The object must be placed just ahead of focus towards the lens.
Explanation:
As we know that a magnifying glass is a convex lens and for the convex lens and for a convex lens we get the image virtual, erect and magnified only when it is placed between the optical center and the focus of the lens.
In that range when the object is nearest to the focus of the lens it has the maximum size.
So it can be possible if the object is placed at 9.98 cm from the optical center.
The largest image is formed at infinity when the object is placed at focus but it is not visible to the normal eyes.