Answer:
a= 17.69 m/s^2
Explanation:
Step one:
given data
A car accelerates uniformly from rest to 23 m/s
u= 0m/s
v= 23m/s
distance= 30m
Step two:
We know that
acceleration= velocity/time
also,
velocity= distance/time
23= 30/t
t= 30/23
t= 1.30 seconds
hence
acceleration= 23/1.30
accelaration= 17.69 m/s^2
To find
we need to use vector addition and use the x and y components. First we subtract vector 2 from vector 5 which results in a vector with a length of 3 pointing directly east, then we use the distance formula to find the length of the net force
which gives
. We now have a magnitude but we also need a direction, since vector 4 and vector 5 are perpendicular. Using
where tan^-1(y/x) we get an angle of 53 degrees. The resultant force vector is 5 distance with an angle of 53 degrees north east.
Answer:

Explanation:
Given that,
Angular speed of a skater, 
The moment of inertia of the skater, I = 0.6 kg-m²
We need to find the angular momentum of the skater. The formula for the angular momentum of the skater is given by :

Substitute all the values,

So, its angular momentum is equal to
.
Answer:
Due to lower risk of injury or damage.
Explanation:
The high divers would choose to enter the water from the feet first because there is low risk of injury. The brain is the most important part of the body which very sensitive to any small injury. Small injury to brain leads to big problems in life. High divers can reach speeds of nearly 60 mph and enters about 28m into the water in about three seconds which can damage the head region if comes in contact with the ground so this is the reason the high divers avoid of entering in the water through their heads and choose entering through their feet.
because water is loosely packed but when it is cold it becomes closely packed in order to form ice and thus the force attraction between them also increase.