Answer:

Explanation:
Hello,
In this case, since we compute the required energy via:

Whereas m is the mass which here is 70 g, C the specific heat which for water is 4.184 J/(g°C) and ΔT is the temperature difference which is:

Therefore, the energy turns out:

Best regards.
The cost of boiling 500cm3 of water using the 3kW kettle is 1.35 P.
<h3>
Cost of electricity for 3 kW kettle</h3>
The cost is calculated as follows;
1 unit = 9p /kWh
Total energy consumed by 3 kW kettle, E = P x t
where;
- P is power (kW)
- t is time in (hr)
E = 3 kW x (3 mins/60 mins/hr)
E = 0.15 kWh
Energy cost = 9 p/kWh x 0.15 kWh = 1.35 P
Thus, the cost of boiling 500cm3 of water using the 3kW kettle is 1.35 P.
Learn more about energy cost here: brainly.com/question/13795167
#SPJ1
Answer:
a) v = 2.4125 m / s , b) Em_{f} / Em₀ = 0.89
Explanation:
a) This is an inelastic crash problem, the system is made up of the four carriages, so the forces during the crash are internal and the moment is conserved
Initial
p₀ = m v₁ + 3 m v₂
Final
= (4 m) v
p₀ =p_{f}
m (v₁ + 3 v₂) = 4 m v
v = (v₁ +3 v₂) / 4
Let's calculate
v = (3.86 + 3 1.93) / 4
v = 2.4125 m / s
b) the initial mechanical energy is
Em₀ = K₁ + 3 K₂
Em₀ = ½ m v₁² + ½ 3m v₂²
The final mechanical energy
= K
Em_{f} = ½ 4 m v²
The fraction of energy lost is
Em_{f} / Em₀ = ½ 4m v² / ½ m (v₁² +3 v₂²)
Em_{f} / Em₀ = 4 v₂ / (v₁² + 3 v₂²)
Em_{f} / Em₀ = 4 2.4125² / (3.86² + 3 1.93²)
Em_{f} / em₀ = 23.28 / 26.07
Em_{f} / Em₀ = 0.89
Flow chart of a system is a diagrammatic representation of how that system performs it's functions.
<h3>The flow chart of internal combustion engine</h3>
The flow chart of internal combustion engine is the diagrammatic representation of how the engine works.
The inlet valve of the engine is the valve that allows for the entry of fuel-air mixture into the engine.
The exhaust valve of the engine is the allows for the outflow of used gases from the engine.
From the attached flow chart, Intake valves are opened to allow the flow of an air/fuel mixture into the engine's cylinders prior to compression and ignition, while exhaust valves open to permit the expulsion of exhaust gases from the combustion process after ignition has occurred.
Learn more about flow chart here:
brainly.com/question/6532130
#SPJ1