The word to fill in the blank is "equal". Because the time taken to rotate (spin on its axis) is equal to the time of revolution (going around the earth), this means that both have the same rate of angular rotation. So for every bit that the moon goes around its orbit around earth, the moon itself rotates accordingly to present the exact same side to earth.
The answer to your question is "20kgx9.8m/s" because weight is the force an object is exerting on another object, and the formula used to calculate force is <em>Force = Mass * Acceleration</em>.
The displacement of a moving object is the straight-line distance between the place it starts from and the place where it stops.
The displacement of anything moving along a circular track depends on how far around it goes before it stops. The greatest displacement it can possibly have is the diameter of the track ... 100m on this particular one ... because that's as far apart as two places on a circle can ever be.
The most interesting case is when the object goes around the circle exactly once. Then it stops at the same place it started from, the distance between the starting point and ending point is zero, and after all that motion, the displacement is zero.
Answer:
Yes convection will always work faster and more efficiently.
Explanation:
When a gas or a liquid is heated, hot areas of the material flow and mix with the cool areas. ... Convection transfers heat over a distance faster than conduction. But ultimately conduction must transfer the heat from the gas to the other object, though molecular contact.