Answer:
4.37 * 10^-4 J
Explanation:
Energy stored :
mgΔl / 2
m = mass = 10kg ; g = 9.8m/s² ; r = cross sectional Radius = 1cm = 1 * 10-2 m
Δl = mgl / πr²Y
Y = Youngs modulus = Y=3.5 ×10^10 ; l = Length = 1m
Δl = (10 * 9.8 * 1) / π * (1 * 10^-2)²* 3.5 ×10^10
Δl = 98 / 3.5 * π * 10^6
Δl = 0.00000891267
Energy stored :
mgΔl / 2
(10 * 9.8 * 0.00000891267) / 2
= 0.00043672083 J
4.37 * 10^-4 J
Answer:
a1 = 3.56 m/s²
Explanation:
We are given;
Mass of book on horizontal surface; m1 = 3 kg
Mass of hanging book; m2 = 4 kg
Diameter of pulley; D = 0.15 m
Radius of pulley; r = D/2 = 0.15/2 = 0.075 m
Change in displacement; Δx = Δy = 1 m
Time; t = 0.75
I've drawn a free body diagram to depict this question.
Since we want to find the tension of the cord on 3.00 kg book, it means we are looking for T1 as depicted in the FBD attached. T1 is calculated from taking moments about the x-axis to give;
ΣF_x = T1 = m1 × a1
a1 is acceleration and can be calculated from Newton's 2nd equation of motion.
s = ut + ½at²
our s is now Δx and a1 is a.
Thus;
Δx = ut + ½a1(t²)
u is initial velocity and equal to zero because the 3 kg book was at rest initially.
Thus, plugging in the relevant values;
1 = 0 + ½a1(0.75²)
Multiply through by 2;
2 = 0.75²a1
a1 = 2/0.75²
a1 = 3.56 m/s²
(50 gal / 5 min) x (.0037854 m³/gal) x (1 min / 60 sec)
= (50 · 0.0037854 · 1) / (5 · 60) m³/sec
= 0.000631 m³/sec
A kilogram is a unit of weight. So a kilogram of bricks would weigh the same as a kilogram of feathers despite if its in water or air since weight is determined by gravity in relation to mass and not what substance the object is in.