Answer:
336.9520 atm
Explanation:
The Gas Equation is as follows;-
Pressure×Volume=Number of Moles × Universal Gas Constant ×Temperature(in Kelvin)
Given Parameters
Number of moles-0.614 mol
Temperature 12°C or 12+273.15 ie 285.15°F
Volume-4.32 L
Universal Gas Constant-8.314 J/mol·K
Pressure -?(in atm)
Plugging in all the values in the Gas Equation:-
Pressure=
Pressure=336.9520 atm
F= ma
F= (600/-10) -10
F= 580n
At least I think that’s the answer
Explanation: A sneaker is a want because you don't actually need it to survive
Answer:
The wavelength of sunlight that can cause this bond breakage is 242 nm
Explanation:
The minimum energy of the sunlight that'll break Oxygen-oxygen bond must match 495 KJ/mol
But 1 mole of any molecule contains 6.02 × 10²³ molecules/mol
Each molecule of Oxygen will require (495 × 10³)/(6.02 × 10²³) = 8.22 × 10⁻¹⁹ J
E = hf
v = fλ
f = v/λ
f = frequency of the sunlight
λ = wavelength of the sunlight
v = speed of light = 3.0 × 10⁸ m/s
E = hv/λ
λ = hv/E
h = Planck's constant = 6.63 × 10⁻³⁴ J.s
λ = (6.63 × 10⁻³⁴)(3 × 10⁸)/(8.22 × 10⁻¹⁹)
λ = 2.42 × 10⁻⁷ m = 242 nm.
Answer:
3.3m/s
Explanation:
You first get the total time (80 + 70 = 150s).
Then you would find the displacement of the truck. To do that you would do component method (vector addition), so since its a right triangle (North and East), displacement is 400^2 + 300^2 = d^2.
d= 500m.
So now that you have displacement and time, you can find the velocity:
v=d/t
v=500/150
v=3.3