Answer:
The pressure at the top of the step is 129.303 kilopascals.
Explanation:
From Hydrostatics we find that the pressure difference between extremes of the water column is defined by the following formula, which is a particular case of the Bernoulli's Principle ():
(1)
, - Total pressures at the bottom and at the top, measured in pascals.
- Density of the water, measured in kilograms per cubic meter.
- Height difference of the step, measured in meters.
If we know that , , and , then the pressure at the top of the step is:
The pressure at the top of the step is 129.303 kilopascals.
A. Base , salt , water,acid
<span>The speed of sound needs to be given, in the proper form. This will allow for the proper conversion (namely, a multiplication by the Mach rate) to find the actual speed that the aircraft is traveling, compared to how fast sound travels.</span>
When you first pull back on the pendulum, and when you pull it back really high the Potential Energy is high and the Kinetic Energy is low, But when up let go, and it gets right around the middle, that's when the Potential energy transfers to Kinetic, at that point the kinetic Energy is high and the potential Energy is low. But when it comes back up at the end. The same thing will happen, the Potential Energy is high, and the Kinetic Energy is low. Through all of that the Mechanical Energy stays the same.
I hope this helps. :)
Brainliest?