1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kupik [55]
3 years ago
13

Speed and time play a major factor in:

Physics
2 answers:
pshichka [43]3 years ago
7 0

Answer:

Explanation:

Speed and time play a major factor in all of the answers. If only one choice is allowed, I would pick Tactical movement.

Sophie [7]3 years ago
7 0

Answer:

Tactical movement

Explanation:

You might be interested in
An object is 15 cm in front of a diverging lens with a
Rainbow [258]

A) See ray diagram in attachment (-6.0 cm)

By looking at the ray diagram, we see that the image is located approximately at a distance of 6-7 cm from the lens. This can be confirmed by using the lens equation:

\frac{1}{q}=\frac{1}{f}-\frac{1}{p}

where

q is the distance of the image from the lens

f = -10 cm is the focal length (negative for a diverging lens)

p = 15 cm is the distance of the object from the lens

Solving for q,

\frac{1}{q}=\frac{1}{-10 cm}-\frac{1}{15 cm}=-0.167 cm^{-1}

q=\frac{1}{-0.167 cm^{-1}}=-6.0 cm

B) The image is upright

As we see from the ray diagram, the image is upright. This is also confirmed by the magnification equation:

h_i = - h_o \frac{q}{p}

where h_i, h_o are the size of the image and of the object, respectively.

Since q < 0 and p > o, we have that h_i >0, which means that the image is upright.

C) The image is virtual

As we see from the ray diagram, the image is on the same side of the object with respect to the lens: so, it is virtual.

This is also confirmed by the sign of q in the lens equation: since q < 0, it means that the image is virtual

4 0
3 years ago
The displacement of a wave traveling in the negative y-direction is D(y,t) = ( 4.60 cm ) sin ( 6.20 y+ 60.0 t ), where y is in m
trapecia [35]

Answer:

The question is incomplete, below is the complete question

"The displacement of a wave traveling in the negative y-direction is D(y,t) = ( 4.60cm ) sin ( 6.20 y+ 60.0 t ), where y is in m and t is in s.

A) What is the frequency of this wave?

B)  What is the wavelength of this wave?

C) What is the speed of this wave?"

Answers:

a.  f=\frac{30}{\pi }Hz\\

b. wavelength=\frac{\pi }{3.1}m \\

c. v=9.68m/s

Explanation:

The equation of a wave is represented as

D(x,t)=Asin(kx+wt) \\

Where A=amplitude

w=angular frequency=2πf

K=wave numbers =2π/λ

since we re giving he equation  D(y,t) = ( 4.60cm ) sin ( 6.20 y+ 60.0 t ),

we can compare and get the value for the wave number and angular frequency.

By comparing we have

w=60rads/s

k=6.20

a. to determine the frequency, from the expression fr angular wave frequency we have

w=2πf hence

f=w/2π

if we substitute we arrive at

f=\frac{60}{2\pi }\\f=\frac{30}{\pi }Hz\\

b. to determine the wave length, we use

k=\frac{2\pi }{wavelength} \\k=6.2\\wavelength=\frac{2\pi }{k} \\wavelength=\frac{2\pi }{6.2} \\wavelength=\frac{\pi }{3.1}m \\

c. the wave speed  v is express as the product of the frequency and the wavelength. Hence

v=frequency*wavelength \\v=\frac{30}{\pi } *\frac{\pi }{3.1}\\ v=9.68m/s

6 0
3 years ago
A bungee jumper jumps off a bridge and bounces up and down several times.
Stella [2.4K]

The energy that was lost due to air resistance while she was bouncing is determined as 3,360 J.

<h3>Conservation of energy</h3>

The amount of energy lost due to  air resistance while she was bouncing is determined from the principle of conservation of energy.

ΔE = P.E - Ux

ΔE = mgh - ¹/₂kx²

ΔE = (50)(9.8)(16) - ¹/₂(35)(16)²

ΔE = 3,360 J

Thus, the energy that was lost due to air resistance while she was bouncing is determined as 3,360 J.

Learn more about energy here: brainly.com/question/13881533

#SPJ1

3 0
2 years ago
Plz! How to solve this question? The answer is B.
LekaFEV [45]

dhvjmdsgyddsfjdbfydgbgdfvdfshfgsdbfhdf nfdfh htiu4ewr huirhfhwref

4 0
3 years ago
You are stranded in a blizzard. You need water to drink to drink,and you're trying to stay warm.should the melt the snow and dri
Crazy boy [7]
It would be a really bad idea to eat the snow because you obviously are trying to stay warm right? Well, the best thing to do is melt the snow. However, the process of melting the snow would have a few complications as well. But yes, the latter idea (drinking the snow) is a better idea (not the best).
7 0
3 years ago
Other questions:
  • What is the most commonly used method of food preservation today? refrigeration drying foods smoking raw meats salt curing
    15·2 answers
  • What do low energy waves have
    12·1 answer
  • a.Calculate the average speed (in km/h) of Charlie, who runs to the store 4 kilometers away in 30 minutes. b.Calculate the dista
    13·1 answer
  • A boy slides a book across the floor, using a force of 5 N over a distance of 2
    7·1 answer
  • How many electrons can a nucleas hold
    14·1 answer
  • I need help please anyone
    5·1 answer
  • A boy throws a stone straight upward with an initial speed of 15m/s. What maximum height will the stone reach before falling bac
    5·1 answer
  • Help! 27 degrees Celsius - What is the temperature in Fahrenheit? please help i will make you a cool thing on the computer ( gra
    10·1 answer
  • A particle with charge 7.76×10^(−8)C is moving in a region where there is a uniform 0.700 T magnetic field in the +x-direction.
    15·1 answer
  • What is rhe average velocity od a baseball dropped from rest that falls for 2 seconds?​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!