Velocity =2 pie*r/t
distance = 2 (pie) r
accelaretion =distance/t2
f=m*v2/r
v=square root of Fr/m
Answer:
The temperature of the windings are 60.61 °C
Explanation:
Step 1: Data given
Resistance = 50 Ω
Temperature = 20.0 °C
After the motor has run for several hours the resistance rises to 58Ω.
Step 2: Calculate the new temperature
Formula: R = Rref(1 + α(T-Tref))
⇒with α = temperature coëfficiënt of Cupper at 20 °C = 0.00394/°C
⇒with Tref = reference temperature = 20°C
⇒with T = end temperature = TO BE DETERMINED
⇒with R = resistance at end temperature = 58Ω
⇒with Rref = resistance at reference temperature = 50 Ω
==> T = (R/Rref - 1)/α + Tref
T = (58/50) - 1 )/ 0.00394 + 20
T = 60.61 °C
The temperature of the windings are 60.61 °C
A developing story hope it helped
A string with linear density 0.500 g/m.
Tension 20.0 N.
The maximum speed 
The energy contained in a section of string 3.00 m long as a function of
.
We are given following data for string with linear density held under tension :
μ = 0.5 
= 0.5 x 10⁻³ 
T = 20 N
If string is L = 3m long, total energy as a function of
is given by:
E = 1/2 x μ x L x ω² x A²
= 1/2 x μ x L x 
= 7.5 x 10⁻⁴ 
So, The total energy as a function of
= 7.5 x 10⁻⁴ 
Learn more about linear density problem here:
brainly.com/question/17190616
#SPJ4
Line drive would be more farthest from the very high angle shot because when we increase the angle of flight the range started to increase and at some point it becomes maximum and that angle is 45° after that as you go on increasing the angle it won't be covering more distance as compared to the max at (45°) .