Answer:
17.82J
Explanation:
Kinetic energy = 1/2 mv^2
Given
Mass M = 0.45kg
Velocity v = 8.9m/s
Therefore,
K.E. = 1/2 x 0.45 x (8.9)^2
= 1/2 x 0.45 x (8.9 x 8.9)
= 1/2 x 0.45 x 79.21
Multiply through
= 35.6445/2
= 17.82J
The kinetic energy of the ball is 17.82J
Answer:
h = 9.57 seconds
Explanation:
It is given that,
Initial speed of Kalea, u = 13.7 m/s
At maximum height, v = 0
Let t is the time taken by the ball to reach its maximum point. It cane be calculated as :




t = 1.39 s
Let h is the height reached by the ball above its release point. It can be calculated using second equation of motion as :

Here, a = -g


h = 9.57 meters
So, the height attained by the ball above its release point is 9.57 meters. Hence, this is the required solution.
Answer:
Explanation:
Inital KE = (1/2) m v^2 = (1/2) * 1500 * 50^2 = 1,875,000 J
Final KE = (1/2) * 1500 * 100^2 = 7,500,000 J
But ,
4 * 1875000 = 7500000
so the KE has increased by 4 times.
Answer:
B. Water and sugar.
Explanation:
In the given options water and sugar would be the poor conductor of electricity. Other given options such as water and salt, water and Hcl and water and NaOH are better conductor of electricity because Hcl ,NaOH, salt (Nacl) can break into their ionic form whereas water and sugar will not.
Answer:
v = 10 m/s
Explanation:
given,
Mass of Mercedes engine = 2000 Kg
Power delivered = 100 kW
angle made with horizontal = 30°
acceleration due to gravity = 10 m/s²
largest speed car can sustain = ?
we know,
Power = Force x velocity
P = F x v
P = mg sinθ x v
P = mg sin 30° x v
P = 0.5 mg x v

v = 10 m/s
hence, the maximum velocity is equal to v = 10 m/s