For the sound wave passing through regions of the ocean with varying density, longer wavelengths correspond to greater density of the water.
<h3>What is effect of density of a medium on wavelength of a wave?</h3>
The density of a medium is directly proportional to the wavelength of a wave.
The higher the density of the medium, the longer the wavelength of a wave.
Therefore, for a sound wave passing through regions of the ocean with varying density, longer wavelengths correspond to greater density of the water.
Learn more about density and wavelength at: brainly.com/question/9486264
#SPJ1
The thermal energy that is generated due to friction is 344J.
<h3>What is the thermal energy?</h3>
Now we know that the total mechanical energy in the system is constant. The loss in energy is given by the loss in energy.
Thus, the kinetic energy is given as;
KE = 0.5 * mv^2 =0.5 * 15.0-kg * (1.10 m/s)^2 = 9.1 J
PE = mgh = 15.0-kg * 9.8 m/s^2 * 2.40 m = 352.8 J
The thermal energy is; 352.8 J - 9.1 J = 344J
Learn more about thermal energy due to friction:brainly.com/question/7207509
#SPJ1
Answer:
v = 17.71 m / s
Explanation:
We can work this exercise with the kinematics equations. In general the body is released so that its initial velocity is zero, the acceleration of the acceleration of gravity
v² = v₀² - 2 g (y -y₀)
v² = 0 - 2g (y -y₀)
when it hits the stone the height is zero and part of the height of the seagull I
v² = 2g y₀
v = Ra (2g i)
let's calculate
v =√ (2 9.8 16)
v = 17.71 m / s
Explanation:
Below is an attachment containing the solution