Answer:
2C
Explanation:
The equivalent capacitance of a parallel combination of capacitors is the sum of their capacitance.
So, if the capacitance of each capacitor is half the previous one, we have a geometric series with first term = C and rate = 0.5.
Using the formula for the sum of the infinite terms of a geometric series, we have:
Sum = First term / (1 - rate)
Sum = C / (1 - 0.5)
Sum = C / 0.5 = 2C
So the equivalent capacitance of this parallel connection is 2C.
Answer:
202.8m
Explanation:
Given that A pirate fires his cannon parallel to the water but 3.5 m above the water. The cannonball leaves the cannon with a velocity of 120 m/s. He misses his target and the cannonball splashes into the briny deep.
First calculate the total time travelled by using the second equation of motion
h = Ut + 1/2gt^2
Let assume that u = 0
And h = 3.5
Substitute all the parameters into the formula
3.5 = 1/2 × 9.8 × t^2
3.5 = 4.9t^2
t^2 = 3.5/4.9
t^2 = 0.7
t = 0.845s
To know how far the cannonball travel, let's use the equation
S = UT + 1/2at^2
But acceleration a = 0
T = 2t
T = 1.69s
S = 120 × 1.69
S = 202.834 m
Therefore, the distance travelled by the cannon ball is approximately 202.8m.
Answer:
V=15.3 m/s
Explanation:
To solve this problem, we have to use the energy conservation theorem:

the elastic potencial energy is given by:

The work is defined as:

this work is negative because is opposite to the movement.
The gravitational potencial energy at 2.5 m aboves is given by:

the gravitational potential energy at the ground and the kinetic energy at the begining are 0.

Answer:
121.3 cm^3
Explanation:
P1 = Po + 70 m water pressure (at a depth)
P2 = Po (at the surface)
T1 = 4°C = 273 + 4 = 277 K
V1 = 14 cm^3
T2 = 23 °C = 273 + 23 = 300 K
Let the volume of bubble at the surface of the lake is V2.
Density of water, d = 1000 kg/m^3
Po = atmospheric pressure = 10^5 N/m^2
P1 = 10^5 + 70 x 1000 x 10 = 8 x 10^5 N/m^2
Use the ideal gas equation

By substituting the values, we get

V2 = 121.3 cm^3
Thus, the volume of bubble at the surface of lake is 121.3 cm^3.