Answer:
John Dalton
Explanation:
Both John Dalton and Democritus thought that the atom was an indivisible sphere until J.J. Thompson came out with the plum pudding model. Hope I helped!
Answer: The answer is A
Explanation: No because it’s is a mixture because physical methods were used to separate its particals
Answer:
Mass of ring = 32 g
Volume of ring = 4 mL
Density of ring = 8 g/mL
Explanation:
From the question given above, the following data were obtained:
Mass of ring = 32 g
Volume of water = 64 mL
Volume of water + ring = 68 mL
Density of ring =?
Next, we shall determine the volume of the ring. This can be obtained as follow:
Volume of water = 64 mL
Volume of water + ring = 68 mL
Volume of ring =?
Volume of ring= (Volume of water + ring) – (Volume of water)
Volume of ring = 68 – 64
Volume of ring = 4 mL
Finally, we shall determine the density of the ring. This can be obtained as follow:
Mass of ring = 32 g
Volume of ring = 4 mL
Density of ring =?
Density = mass / volume
Density of ring = 32 / 4
Density of ring = 8 g/mL
Answer:
Explanation:
<u>1) Data:</u>
a) Hypochlorous acid = HClO
b) [HClO} = 0.015
c) pH = 4.64
d) pKa = ?
<u>2) Strategy:</u>
With the pH calculate [H₃O⁺], then use the equilibrium equation to calculate the equilibrium constant, Ka, and finally calculate pKa from the definition.
<u>3) Solution:</u>
a) pH
b) Equilibrium equation: HClO (aq) ⇄ ClO⁻ (aq) + H₃O⁺ (aq)
c) Equilibrium constant: Ka = [ClO⁻] [H₃O⁺] / [HClO]
d) From the stoichiometry: [CLO⁻] = [H₃O⁺] = 2.29 × 10 ⁻⁵ M
e) By substitution: Ka = (2.29 × 10 ⁻⁵ M)² / 0.015M = 3.50 × 10⁻⁸ M
f) By definition: pKa = - log Ka = - log (3.50 × 10 ⁻⁸) = 7.46