Answer:
(a): 2ZnO(s) -----------> 2Zn(s) + O2(g)
2C(s) + O2(g) ---------> 2CO(g)
(b): ZnO(s) + C(s) ---------> Zn(s) + CO(g)
The SI unit for specific heat capacity is the joule per kilogram Kelvin, J?kg-1?K-1 or J/(kg?K), which is the amount of energy required to raise the temperature of one kilogram of the substance by one Kelvin
The pressure exerted by 0.400 moles of carbon dioxide in a 5.00 Liter container at 25 °C would be 1.9563 atm or 1486.788 mm Hg.
<h3>The ideal gas law</h3>
According to the ideal gas law, the product of the pressure and volume of a gas is a constant.
This can be mathematically expressed as:
pv = nRT
Where:
p = pressure of the gas
v = volume
n = number of moles
R = Rydberg constant (0.08206 L•atm•mol-1K)
T = temperature.
In this case:
p is what we are looking for.
v = 5.00 L
n = 0.400 moles
T = 25 + 273
= 298 K
Now, let's make p the subject of the formula of the equation.
p = nRT/v
= 0.400 x 0.08206 x 298/5
= 1.9563 atm
Recall that: 1 atm = 760 mm Hg
Thus:
1.9563 atm = 1.9563 x 760 mm Hg
= 1486.788 mm Hg
In other words, the pressure exerted by the gas in atm is 1.9563 atm and in mm HG is 1486.788 mm Hg.
More on the ideal gas law can be found here: brainly.com/question/28257995
#SPJ1
If you look it up it will give you plenty of information. This is what I found:
The valence electrons of metals move freely in this way because metals have relatively low electronegativity, or attraction to electrons. The positive metal ions form a lattice-like structure held together by all the metallic bonds. ... When nonmetals bond together, the atoms share valence electrons and do not become ions
https://www.ck12.org/c/physical-science/metallic-bond/lesson/Metallic-Bonding-MS-PS/