Answer:
To find out what water is made of, it helps to look at its chemical formula, which is H2O. This basically tells us that the water molecule is composed of two elements: hydrogen and oxygen or, more precisely, two hydrogen atoms (H2) and one oxygen atom (O).
Explanation:
Answer:
15 m/s^2 The first thing to calculate is the difference between the final and initial velocities. So 180 m/s - 120 m/s = 60 m/s So the plane changed velocity by a total of 60 m/s. Now divide that change in velocity by the amount of time taken to cause that change in velocity, giving 60 m/s / 4.0 s = 15.0 m/s^2 Since you only have 2 significaant figures, round the result to 2 significant figures giving 15 m/s^2
Explanation:
Answer:
T = 764.41 N
Explanation:
In this case the tension of the string is determined by the centripetal force. The formula to calculate the centripetal force is given by:
(1)
m: mass object = 2.3 kg
r: radius of the circular orbit = 0.034 m
v: tangential speed of the object
However, it is necessary to calculate the velocity v first. To find v you use the formula for the kinetic energy:

You have the value of the kinetic energy (13.0 J), then, you replace the values of K and m, and solve for v^2:

you replace this value of v in the equation (1). Also, you replace the values of r and m:

hence, the tension in the string must be T = Fc = 764.41 N