Answer:
The estimate of a population proportion is approximately 541.
Step-by-step explanation:
We can solve the the problem by using the formula for minimum sample needed for interval estimate of a population proportion which is given by the formula
n = pq ((Z/2) / E)^2
As, p is not defined so we use the standard p and q which is 0.5 and 0.5.
The reason for this is we have to choose form 0.1 to 0.9 both values of p and q, we will find the maximum value of pq occurs when they both are 0.5.
Next, we will find the value of (Z/2) by looking at the Z-table, we will find that at 98% confidence (Z/2) = 2.326. Now we start substituting the values in the above formula
n = (0.5)×(0.5) × (2.326/0.05)^2
n = 541.027
n ≅ 541.
112,811 rounded to the nearest hundred thousand is 100,000
You want to find the value of x for which the area under the curve to the left of x is 0.6. One way to do that is to create the cumulative distribution function (CDF) for the given PDF, then see where it is equal to 0.6.
Doing that, we find a = 5.