Burette is a very accurate measuring instrument when adding solutions and has a measurement error of 0.05 mL.
Small volumes of solutions can be transferred from the burette at a controllable rate.
In this instance NaOH is in the burette.
Initial reading of NaOH is 0.20 mL
end point is the point at which the chemical reaction reaches completion. In acid base reactions, end point is when all the H⁺ ions have reacted with OH⁻ ions.
final reading of NaOH is 24.10 mL
to find the volume of NaOH dispensed we have to find the difference between final reading and initial reading
volume of NaOH added = 24.10 mL - 0.20 mL = 23.90 mL
volume of NaOH dispensed is 23.90 mL
M(O₂)=20g
M(O₂)=32.0 g/mol
n(O₂)=20/32.0=0.625 mol
m(C)=12 g
M(C)=12.0 g/mol
n(C)=12/12.0=1.0 mol
2C + O₂ → 2CO
1 mol 0.625 mol 1 mol
0.625-0.5=0.125 mol
2CO + O₂ → 2CO₂
0.250 mol 0.125 mol 0.250 mol
n(CO)=1 mol - 0.250 mol = 0.750 mol
M(CO)=28.0 g/mol
m(CO)=0.750*28.0=21.0 g
n(CO₂)=0.250 mol
M(CO₂)=44.0 g/mol
m(CO₂)=0.250*44.0=11.0 g
4d7 , 3s2 will be the valence shell electronic configuration of a neutral atom of cobalt!
Answer:
All bonds are equivalent in length and strength within the molecule.
Gaseous SO3 is a trigonal planar molecule that exhibit a D3h symmetry group.
Sulfur has sp2 hybridization and it has 6 outer electrons which make the bonds with the oxygen.
Its constituent sulfur atom has an oxidation state of +6 and a formal charge of 0.
The Lewis structure is made up of one S=O double bond and two S–O dative bonds that doesn't not engage the d-orbitals. ( Thus, SO3 molecule has three double bonded oxygen to the central sulfur atom). This explains the strength.
It gaseous form had a zero electrical dipole moment because of the 120° angle between the S-O bonds.
Explanation:
Good grief, this stuff got caught in a black hole somewhere. It is terribly dense.
1 mL = 1 cc under normal conditions.
d = mass / volume
m = 20 kg
v = 5 mL
d = 20kg / 5 mL
d = 4 kg / mL
d = 4 kg / cc
A <<<<answer