1) Compund Ir (x) O(y)
2) Mass of iridium = mass of crucible and iridium - mass of crucible = 39.52 g - 38.26 g = 1.26 g
3) Mass of iridium oxide = mass of crucible and iridium oxide - mass of crucible = 39.73g - 38.26g = 1.47g
4) Mass of oxygen = mass of iridum oxide - mass of iridium = 1.47g - 1.26g = 0.21g
5) Convert grams to moles
moles of iridium = mass of iridium / molar mass of iridium = 1.26 g / 192.17 g/mol = 0.00656 moles
moles of oxygen = mass of oxygen / molar mass of oxygen = 0.21 g / 15.999 g/mol = 0.0131
6) Find the proportion of moles
Divide by the least of the number of moles, i.e. 0.00656
Ir: 0.00656 / 0.00656 = 1
O: 0.0131 / 0.00656 = 2
=> Empirical formula = Ir O2 (where 2 is the superscript for O)
Answer: Ir O2
Both are oxidation reactions. Burning is just a lot faster than rusting.
1. temperature is dependent
2. energy is independent
3. the graph looks like a line sloping upward
4. the line means that as energy increases the temperature also increases
5. a straight line would mean that as energy increases temperature remains constant
sorry that's all I can do
B. The area of the island is your answer :)
Answer:
Explanation:
The hydrostatic pressure is defined as the pressure that is exerted by a fluid at equilibrium at a given point within the fluid, due to the force of gravity, the formula is:
P = ρgh + P₀
Where:
ρ is density (1020kg/m³)
g is gravity (9,8m/s²)
h is depth (150m)
P₀ is the atmspheric pressure (101325 Pa)
Replacing, P = 1'600'725 Pa
I hope it helps!