Answer:
Crude oil is separated by fractional distillation. Crude oil is heated to vaporize the different hydrocarbons in a tank which is cool at the top and hot at the bottom. The vapours then rise and the different hydrocarbons condense at their specific boiling points, allowing them to be separated.
Lighter products, such as butane and other liquid petroleum gases (LPG), gasoline blending components, and naphtha, are recovered at the lowest temperatures. Mid-range products include jet fuel, kerosene, and distillates (such as home heating oil and diesel fuel).
Answer:
1837.89 Lt
Explanation:
The chemical reaction for this situation is:
NaHCO₃ + HCl → NaCL + H₂O + CO₂ ₍g₎
Where the mola mass we need are:
M NaHCO₃ = 84 g/mol
M CO₂ = 44 g/mol
As we have 6.00 Kg of sodium bicarbonate, then:
6 Kg NaHCO₃ = 71.43 moles of NaHCO₃
Due the stoichiometry of this chemaicl reaction:
1 mol NaHCO₃ = 1 mol CO₂
71.43 moles NaHCO₃ = 71.43 moles CO₂
And considering that CO₂ is an ideal gas, we can use the following formula:
PV=nRT
V = (nRT)/P
n = 71.43 mol
R = 0.083 Ltxatm(molxK)
T = 37°C = 310 K
P = 1 atm
So: V = (71.43x0.083x310)/1
V CO₂ = 1837.89 Lt
Answer:
The copper oxide can then react with the hydrogen gas to form the copper metal and water. When the funnel is removed from the hydrogen stream, the copper was still be warm enough to be oxidized by the air again.
Explanation: