In a parallel circuit, the total resistance calculated from the individual resistances is computed from the formula: 1/Rt = 1/R1 + 1/R2. substituting R1 and R2, then
1/Rt = 1/7 + 1/49
1/Rt = 1/6.125 = 1/ 49/8
Rt = 49/8 <span>Ω
The total resistance hence is </span>49/8 Ω
Answer:
A) total intensity = 5x10^-4W/m2
B) total intensity = 5.34x10^-4W/m2
Explanation:
Detailed explanation and calculation is shown in the image below
<u>Answer:</u> The velocity of released alpha particle is 
<u>Explanation:</u>
According to law of conservation of momentum, momentum can neither be created nor be destroyed until and unless, an external force is applied.
For a system:

where,
= Initial mass and velocity
= Final mass and velocity
We are given:

Putting values in above equation, we get:

Hence, the velocity of released alpha particle is 
To solve this problem it is necessary to apply the concepts related to the conservation of energy, specifically the potential elastic energy against the kinetic energy of the body.
By definition this could be described as


Where
k = Spring constant
x = Displacement
m = mass
v = Velocity
This point is basically telling us that all the energy in charge of compressing the spring is transformed into the energy that allows the 'impulse' seen in terms of body speed.
If we rearrange the equation to find v we have

Our values are given as



Replacing at our equation we have then,



Therefore he speed of the car before impact, assuming no energy is lost in the collision with the wall is 2.37m/s