Exothermic reaction releases energy in the form of heat or light
Answer:
Option B. 4.25×10¯¹⁹ J
Explanation:
From the question given above, the following data were obtained:
Frequency (f) = 6.42×10¹⁴ Hz
Energy (E) =?
Energy and frequency are related by the following equation:
Energy (E) = Planck's constant (h) × frequency (f)
E = hf
With the above formula, we can obtain the energy of the photon as follow:
Frequency (f) = 6.42×10¹⁴ Hz
Planck's constant (h) = 6.63×10¯³⁴ Js
Energy (E) =?
E = hf
E = 6.63×10¯³⁴ × 6.42×10¹⁴
E = 4.25×10¯¹⁹ J
Thus, the energy of the photon is 4.25×10¯¹⁹ J
I would say mass lost by nuclear collisions. The mass defect is the mass difference between the mass of an atomic nucleus and the sum of the mass of its constituent particles. It equals the energy given off in the formation of the nucleus.
It is know as the normal force.
When a solid is placed on a support, the latter exerts forces on the solid at each point of contact. These are forces that oppose the weight and prevent an object from falling.
This force is usually vertical and upward and often offsets the weight. If the solid is in equilibrium on the support the forces compensate the weight of the solid.
Answer:
26.0 g/mol is the molar mass of the gas
Explanation:
We have to combine density data with the Ideal Gases Law equation to solve this:
P . V = n . R .T
Let's convert the pressure mmHg to atm by a rule of three:
760 mmHg ____ 1 atm
752 mmHg ____ (752 . 1)/760 = 0.989 atm
In density we know that 1 L, occupies 1.053 grams of gas, but we don't know the moles.
Moles = Mass / molar mass.
We can replace density data as this in the equation:
0.989 atm . 1L = (1.053 g / x ) . 0.082 L.atm/mol.K . 298K
(0.989 atm . 1L) / (0.082 L.atm/mol.K . 298K) = 1.053 g / x
0.0405 mol = 1.053 g / x
x = 1.053 g / 0.0405 mol = 26 g/mol