Answer:
![\large\boxed{1.\ f^{-1}(x)=\sqrt[12]{3^x}}\\\\\boxed{2.\ f^{-1}(x)=\sqrt[4]{3^x}}\\\\\ \boxed{3.\ f^{-1}(x)=\sqrt[3]{4^{7-x}}}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B1.%5C%20f%5E%7B-1%7D%28x%29%3D%5Csqrt%5B12%5D%7B3%5Ex%7D%7D%5C%5C%5C%5C%5Cboxed%7B2.%5C%20f%5E%7B-1%7D%28x%29%3D%5Csqrt%5B4%5D%7B3%5Ex%7D%7D%5C%5C%5C%5C%5C%20%5Cboxed%7B3.%5C%20f%5E%7B-1%7D%28x%29%3D%5Csqrt%5B3%5D%7B4%5E%7B7-x%7D%7D%7D)
Step-by-step explanation:

![2.\\y=\log_3x^4\\\\\text{Exchange x and y. Solve for y:}\\\\\log_3y^4=x\Rightarrow3^{\log_3y^4}=3^x\Rightarrow y^{4}=3^x\\\\y=\sqrt[4]{3^x}\\-------------------------](https://tex.z-dn.net/?f=2.%5C%5Cy%3D%5Clog_3x%5E4%5C%5C%5C%5C%5Ctext%7BExchange%20x%20and%20y.%20Solve%20for%20y%3A%7D%5C%5C%5C%5C%5Clog_3y%5E4%3Dx%5CRightarrow3%5E%7B%5Clog_3y%5E4%7D%3D3%5Ex%5CRightarrow%20y%5E%7B4%7D%3D3%5Ex%5C%5C%5C%5Cy%3D%5Csqrt%5B4%5D%7B3%5Ex%7D%5C%5C-------------------------)
![3.\\y=-\log_4x^3+7\\\\\text{Exchange x and y. Solve for y:}\\\\-\log_4y^3+7=x\qquad\text{subtract 7 from both sides}\\\\-\log_4 y^3=x-7\qquad\text{change the signs}\\\\\log_4y^3=7-x\Rightarrow4^{\log_4y^3}=4^{7-x}\\\\y^3=4^{7-x}\Rightarrow y=\sqrt[3]{4^{7-x}}](https://tex.z-dn.net/?f=3.%5C%5Cy%3D-%5Clog_4x%5E3%2B7%5C%5C%5C%5C%5Ctext%7BExchange%20x%20and%20y.%20Solve%20for%20y%3A%7D%5C%5C%5C%5C-%5Clog_4y%5E3%2B7%3Dx%5Cqquad%5Ctext%7Bsubtract%207%20from%20both%20sides%7D%5C%5C%5C%5C-%5Clog_4%20y%5E3%3Dx-7%5Cqquad%5Ctext%7Bchange%20the%20signs%7D%5C%5C%5C%5C%5Clog_4y%5E3%3D7-x%5CRightarrow4%5E%7B%5Clog_4y%5E3%7D%3D4%5E%7B7-x%7D%5C%5C%5C%5Cy%5E3%3D4%5E%7B7-x%7D%5CRightarrow%20y%3D%5Csqrt%5B3%5D%7B4%5E%7B7-x%7D%7D)
Answer:
11 years
Step-by-step explanation:
14 divide 2=7
7 divide 2=3.5
3.5 divide 2 = 175 subtract 1 extra year to turn to 200. So the answer is 11.
Let the lengths of the sides of the rectangle be x and y. Then A(Area) = xy and 2(x+y)=300. You can use substitution to make one equation that gives A in terms of either x or y instead of both.
2(x+y) = 300
x+y = 150
y = 150-x
A=x(150-x) <--(substitution)
The resulting equation is a quadratic equation that is concave down, so it has an absolute maximum. The x value of this maximum is going to be halfway between the zeroes of the function. The zeroes of the function can be found by setting A equal to 0:
0=x(150-x)
x=0, 150
So halfway between the zeroes is 75. Plug this into the quadratic equation to find the maximum area.
A=75(150-75)
A=75*75
A=5625
So the maximum area that can be enclosed is 5625 square feet.
The volume of a cone is

where r = radius and h = height. If the cone has a volume of 94.2 cm³ (I assume you didn't mean m³ because that would be ridiculously huge) and a height of 10 cm, we can plug these values into the formula to find the radius. Don't do any rounding.

Now we know that's going to be the radius of our <em>new </em>cone as well since we're keeping the diameter the same. The volume is going to be double 94.2 which is 188.4. Let's solve for the height.
Answer:
D
Step-by-step explanation:
A function is where each input (here, the input is x) corresponds to exactly one output (here, the output is y). In other words, if a function is graphed, we should be able to draw a vertical line through every single part of it that will intersect it at only one place.
Let's examine each choice.
(A) Well, if we draw a vertical line through the graph, it will obviously intersect the entire line - which is an infinite number of intersections, so this is not a function.
(B) If we draw a vertical line through the portion of the graph that lies near the positive x-axis, we note that it will intersect twice, so this is not a function.
(C) If we strategically draw a vertical line through the y-axis, we see it will intersect two times, so this is not a function.
(D) We can draw a vertical line through any portion of this graph and know that it will only intersect once.
Therefore, the answer is D.