Chemical changes cause a substance to change into an entirely substance with a new chemical formula. Chemical changes are also known as chemical reactions. The “ingredients” of a reaction are called reactants, and the end results are called products.
There are many combinations because it is not all about the number of chemicals, but also about the size of the strand. The longer the strand the more combinations there are and more variations and various lengths provide various results.
Answer:
9.29 mol
Explanation:
Given data:
Number of moles = ?
Mass = 148.6 g
Solution:
Number of moles = mass/ molar mass
Molar mass of CH₄ = 16 g/mol
Now we will put the values in formula.
Number of moles = 148.6 g/ 16 g/mol
Number of moles = 9.29 mol
Thus 148.6 g have 9.29 moles.
Answer:
his is an example of a first-year chemistry question where you must first convert two of the pressures to the units of the third and add them up, per Dalton’s law of additive pressures. There are three possible answers, one for each of the three pressure units.
1 atm = 760 torr …… torr and mm Hg are the same
1 atm = 101.3 kPa
Dalton’s law:
P(total) = P(O2) + P(N2) + P(CO2)
Explanation:
Gases will assume whatever pressure depending on the equation of state of the mixture (in this case) and the volume htey are contained in. That could be the ideal gas law and simple mixing law, If you are quoting the partial pressures which you call simply “the pressure” of each gas, and that these refer to their values in the present mixture, then yes, we would add them up. The pressures are low enough for the ideal gas law to apply provided the temperature is not extremely low as well .
To name this Alkyne, simply count from the direction that will give the lowest starting number to appear at the beginning of the carbon triple bond.
If you were to count from the top of the chain, the position of the carbon next to the triple bond would be 4. Yet if you count from the bottom chain going left to right and above the chain, the position of the carbon next to the triple bond would be 3.
Then identify the groups that are connected off the parent chain, here we have a methyl group on carbon 2.
Thus the name would be 2 - methyl - 3 - heptyne. I believe.