Answer:
Hg(NO3)2 + Na2CO3 --> 2NaNO3 + HgCO3
Explanation:
It is given that vapor pressure of liquid iodomethane is 40.0 mm Hg. So, if we calculate the vapor pressure according to the given values and if its value will be greater than the the given vapor pressure of iodomethane then it means that some of the vapors has converted into liquid state.
As the given values are as follows.
= 72.0 mm Hg,
= 404 K
= ? ,
= 249 K
As volume is constant so, according to Gay-Lussac's law pressure is directly proportional to temperature.
(at constant volume)
or,
= k
Therefore, the formula to calculate the value of
is as follows.
= 
= 
= 44.37 mm Hg
As calculated vapor pressure is more than the given vapor pressure. Hence, the liquid will convert into gas.
As a result, no condensation will occur and only vapors of iodomethane will be present.
Answer:
The molarity of the solution is 0,31 M
Explanation:
We calculate the weight of 1 mol of NaCl from the atomic weights of each element of the periodic table. Then, we calculate the molarity, which is a concentration measure that indicates the moles of solute (in this case NaCl) in 1000ml of solution (1 liter)
Weight 1 mol NaCl= Weight Na + Weight Cl= 23 g + 35, 5 g= 58, 5 g
58, 5 g-----1 mol NaCl
13,1 g ---------x= (13,1 g x 1 mol NaCl)/58, 5 g= 0, 224 mol NaCl
727 ml solution------ 0, 224 mol NaCl
1000ml solution------x= (1000ml solutionx0, 224 mol NaCl)/727 ml solution
x=0,308 mol NaCl---> <em>The solution is 0,31 molar (0,31 M)</em>
Answer: The final volume of this solution is 0.204 L.
Explanation:
Given: Molarity of solution = 2.2 M
Moles of solute = 0.45 mol
Molarity is the number of moles of solute present divided by volume in liters.

Substitute the values into above formula as follows.

Thus, we can conclude that the final volume of this solution is 0.204 L.
Answer:
The correct answer is b. 1280 cm^2