Answer:
1.9 L
Explanation:
Step 1: Given data
- Initial number of moles of air (n₁): 4.0 mol
- Initial volume of the balloon (V₁): 2.5 L
- Final number of moles of air (n₂): 3.0 mol
- Final volume of the balloon (V₂): ?
Step 2: Calculate the final volume of the balloon
According to Avogadro's law, the volume of an ideal gas is directly proportional to the number of moles. We can calculate the final volume of the balloon using the following expression.
V₁ / n₁ = V₂ / n₂
V₂ = V₁ × n₂ / n₁
V₂ = 2.5 L × 3.0 mol / 4.0 mol
V₂ = 1.9 L
207 is the mass number. 82 would be the atomic number
There are 3 major types of radiation. The Alpha, Beta and Gamma radiation. It is the Alpha radiation that can be stopped by a piece of paper or fabric. Beta on the other hand can be stopped by plastic or a thin sheet of metal and Gamma by a piece of aluminum foil or lead.
The reaction formula CH4 + 2O2 → CO2 + 2H2O shows the oxidation of 1 mole of CH4 (Methane) will yield 1 mole of CO2 (Carbon Dioxide). Since 1 mole of CH4 will weigh 12g (for the Carbon) + 4g (1g for each Hydrogen) = 16g, then 32g of CH4 will correspond to 32g / 16g/mole = 2 moles. Therefore the oxidation of 2 moles of CH4 will yield 2 moles of CO2.
Answer:
A. There was still 140 ml of volume available for the reaction
Explanation:
According to Avogadro's law, we have that equal volumes of all gases contains equal number of molecules
According to the ideal gas law, we have;
The pressure exerted by a gas, P = n·R·T/V
Where;
n = The number of moles
T = The temperature of the gas
R = The universal gas constant
V = The volume of the gas
Therefore, given that the volumes and number of moles of the removed air and added HCl are the same, the pressure and therefore, the volume available for the reaction will remain the same
There will still be the same volume available for the reaction.