Answer:
B. Is its acceleration constant
Explanation:
Uniform circular motion can be described as the motion of an object in a circle at a constant speed. As an object moves in a circle, it is constantly changing its direction. ... An object undergoing uniform circular motion is moving with a constant speed. Nonetheless, it is accelerating due to its change in direction.
Answer:
Convergent plate boundary
Explanation:
The convergent plate boundary refers to the type of boundary where two plates move towards each other. Due to this type of motion, there forms a subduction zone, where the denser plate subducts below the lighter plate. This zone of subduction is commonly identified by the presence of a deep and narrow V-shaped depression which is commonly known as the oceanic trench.
When the subducting plate enters into the region of the asthenosphere, the rocks melt and mix with the magma. This magma is then pushed upward due to the force exerted by the convection current that forms in the mantle, and further reaches the over-riding plate and eventually give rise to the formation of volcanoes and volcanic/island arcs.
Thus, this type of plate boundary is responsible for the formation of above-ground volcanic activities.
I think the correct answer would be B. The process of elastic rebound is being shown by the student. It is a theory that is used to explain earthquakes. It focuses on how energy is being spread in times of earthquakes. As the rocks on the fault experiences shift and force, these rocks would be accumulating energy causing it to deform reaching the internal strength and eventually exceeding it. At that moment, a rapid motion would happen along the fault, which releases the energy, then the rocks would go back to its original shape or the undeformed state. This theory is the first theory that sufficiently was able to explain earthquakes.