I choose the option A.
The electron absorbs energy from specific wavelength then moving from a lower energy orbital to a higher energy orbital.
Answer: 
Explanation:Bond energy of H-H is 436.4 kJ/mole
Bond energy of C-H is 414 kJ/mol
Bond energy of C=C is 620 kJ/mol
Bond energy of C≡C is 835 kJ/mol

= {1B.E(C≡C)+2B.E(C-H) +1B.E(H-H)} - {1B.E(C=C)+4B.E(C-H)}


I think it's D, because theoretical yield is like, the yield you'd get if 100% of the reactants formed to make product. Well that's how I think of it, but it has something to do with limiting reagents and stuff. Sorry this isn't a really detailed explanation.
Answer:
Answer is in the attachment
Answer:
2co+o2=2co2
Explanation:
co+o2=co2
here is one carbon monoxide and two oxygen react with it and forms carbon dioxide..
2co+o2=2co2
hey mate hope it's help you.. please mark it as a brain.... answer