Answer: Equilibrium constant for this reaction is
.
Explanation:
Chemical reaction equation for the formation of nickel cyanide complex is as follows.
We know that,
K =
We are given that,
and,
Hence, we will calculate the value of K as follows.
K =
K = 
= 
Thus, we can conclude that equilibrium constant for this reaction is
.
(a) We know that work is the product of Force and Distance so: (in this
case Distance is negative since going down so –d)
work = force * distance
work = M * (g - g/4) * -d
work = -3Mgd/4 <span>
(b) The work by the weight of the block is simply:</span>
work = Mgd <span>
(c) The kinetic energy is simply equivalent to the
net work, therefore:</span>
KE = net work
KE = Mgd/4 <span>
(d) The velocity is:</span>
v = √(2*KE/M)
Plugging in the value of KE from c:
v = √(2*Mgd / 4M)
<span>v = √(gd / 2) </span>
Answer:
The concentration of the analyte is determined by fitting the absorbance or transmittance obtained by spectrophotometric analysis of the unknown solution into the calibration curve.
Explanation:
In a calibration curve, the instrumental response (absorbance or transmittance), is plotted against the concentration of the analyte (the substance to be measured). The analyst is expected to prepare a series of standard solutions of the analyte within a range of solution concentrations close to the expected concentration of analyte in the unknown solution. The method of least squares may be used to determine the best fit of the line, thus, the concentration of the analyte. This method is only used for the determination of the concentration of coloured substances (spectrophotometry).
Answer: Least Common Multiplier of a6m, 0.003 moles 0.01elamos
Steps 6m, 0.003 moles
Compute an expression comprised of Factors that appear either in a6m or 0.003 moles
= 0.018elamos
Explanation:
Answer:
You can heat it and then let it cool it in a very strong magnetic field.