I think the amount of force will decrease and the amount of work will increase
Answer:
k = 1073.09 N/m
A = 0.05 m
Explanation:
Given:
- Time period T = 0.147 s
- maximum speed V_max = 2 m/s
- mass of the block m = 0.67 kg
Find:
- The spring constant k
- The amplitude of the motion A.
Solution:
- A general simple harmonic motion is modeled by:
x (t) = A*sin(w*t)
- The velocity of the above modeled SHM is:
v = dx / dt
v(t) = A*w*cos(w*t)
- Where A is the amplitude in meters, w is the angular speed rad/s and time t is in seconds.
- We can see that maximum velocity occurs when (cos(w*t)) maximizes i.e it is equal to 1 or -1. Hence,
- V_max = A*w
- Where w is related to mass of the object and spring constant k as follows,
w = sqrt ( k / m )
- The relationship between w angular speed and Time period T is:
w = 2*pi / T
- Equating the above two equations we have,
m*(2*pi / T)^2 = k
- Hence, k = 0.67*(2*pi / 0.157)^2
k = 1073.09 N / m
- So, amplitude A is:
A = V_max*sqrt ( m / k )
A = 2*sqrt ( 0.67 / 1073.09 )
A = 0.05 m
The correct answer of the given question above would be the first option. The statement that is true concerning atoms is that, atoms are made of even smaller substances called subatomic particles. Subatomic particles include neutrons, protons, electrons and atomic nuclei. Hope this answer helps.
Answer:
R = 545.38 m ; θ = 28.43°
Explanation:
given,
for town A : d₁ = 335 km at an direction of 20° north of east
for town B : d₂ = 245 km at 30.0° west of north from town A
x = 335 cos 20° + 245 sin 30°
x = 437.29 m
y = 335 sin 20° + 245 cos 30°
y = 326.75 m


R = 545.38 m

θ = 28.43°
<span>a. The temperature increases.</span>