1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luden [163]
3 years ago
11

When the vessel and its contents are warmed to 100 °C, Q decomposes into its constituent elements. What is the total pressure, a

nd what are the partial pressures of xenon and oxygen in the container?

Engineering
1 answer:
Aleksandr [31]3 years ago
4 0

Answer:

The question is incomplete, but here is a similar question with complete details ; Gaseous compound Q contains only xenon and oxygen . When 0.100 g of Q is placed in a 50.0 mL steel vessel at 0 °C, the pressure is 0.229 atm. (a) What is the molar mass of Q (b) When the vessel and its contents are warmed to 100 °C, Q decomposes into its constituent elements . What is the total pressure , and what are the partial pressures of Xenon and Oxygen

Explanation:

The step by step calculations is as shown in the attached file.

It should be noted that what was applied is

  1. The Ideal gas equation PV = nRT
  2. Daltons law of partial pressure which states that in a mixture of gases, the total pressure exerted is equal to the sum of the individual partial pressures of the gases at constant temperature.
  3. It should be noted that the total pressure of the gases can be gotten by applying pressures law at constant volume
  4. P1/P2 = T1/T2
  5. It should also be noted that Partial pressure = Total pressure x Mole fraction

You might be interested in
Supercharging is the process of (a) Supplying the intake of an engine with air at a density greater than the density of the surr
iVinArrow [24]

Answer:

a)supplying the  intake of an engine  with air at a  density greater  than the density  of the surrounding  atmosphere

Explanation:

Supercharging  is the process of  supplying the  intake of an engine  with air at a  density greater  than the density  of the surrounding  atmosphere.

By doing this , it increases  the power out put  and increases the  brake thermal  efficiency of the  engine.It also  increases the  volumetric efficiency of the  engine.

So the our  option a is  right.

4 0
3 years ago
Water vapor at 10bar, 360°C enters a turbine operatingat steady state with a volumetric flow rate of 0.8m3/s and expandsadiabati
Artyom0805 [142]

Answer:

A) W' = 178.568 KW

B) ΔS = 2.6367 KW/k

C) η = 0.3

Explanation:

We are given;

Temperature at state 1;T1 = 360 °C

Temperature at state 2;T2 = 160 °C

Pressure at state 1;P1 = 10 bar

Pressure at State 2;P2 = 1 bar

Volumetric flow rate;V' = 0.8 m³/s

A) From table A-6 attached and by interpolation at temperature of 360°C and Pressure of 10 bar, we have;

Specific volume;v1 = 0.287322 m³/kg

Mass flow rate of water vapour at turbine is defined by the formula;

m' = V'/v1

So; m' = 0.8/0.287322

m' = 2.784 kg/s

Now, From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific enthalpy;h1 = 3179.46 KJ/kg

Now, From table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific enthalpy;h2 = 3115.32 KJ/kg

Now, since stray heat transfer is neglected at turbine, we have;

-W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2 - h1)

Plugging in relevant values, the work of the turbine is;

W' = -2.784(3115.32 - 3179.46)

W' = 178.568 KW

B) Still From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific entropy: s1 = 7.3357 KJ/Kg.k

Still from table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific entropy; s2 = 8.2828 KJ/kg.k

The amount of entropy produced is defined by;

ΔS = m'(s2 - s1)

ΔS = 2.784(8.2828 - 7.3357)

ΔS = 2.6367 KW/k

C) Still from table A-6 attached and by interpolation at state 2 with s2 = s2s = 8.2828 KJ/kg.k and Pressure of 1 bar, we have;

h2s = 2966.14 KJ/Kg

Energy equation for turbine at ideal process is defined as;

Q' - W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Again, Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2s - h1)

W' = -2.784(2966.14 - 3179.46)

W' = 593.88 KW

the isentropic turbine efficiency is defined as;

η = W_actual/W_ideal

η = 178.568/593.88 = 0.3

8 0
4 years ago
A vertical piston-cylinder device initially contains 0.2 m3 of air at 20°C. The mass of the piston is such that it maintains a c
Ann [662]

Answer:

Amount of air left in the cylinder=m_{2}=0.357 Kg

The amount of heat transfer=Q=0

Explanation:

Given

Initial pressure=P1=300 KPa

Initial volume=V1=0.2m^{3}

Initial temperature=T_{1}=20 C

Final Volume=V_{2}=0.1 m^{3}

Using gas equation

m_{1}=((P_{1}*V_{1})/(R*T_{1}))

m1==(300*0.2)/(.287*293)

m1=0.714 Kg

Similarly

m2=(P2*V2)/R*T2

m2=(300*0.1)/(0.287*293)

m2=0.357 Kg

Now calculate mass of air left,where me is the mass of air left.

me=m2-m1

me=0.715-0.357

mass of air left=me=0.357 Kg

To find heat transfer we need to apply energy balance equation.

Q=(m_{e}*h_{e})+(m_{2}*h_{2})-(m_{1}*h_{1})

Where me=m1-m2

And as the temperature remains constant,hence the enthalpy also remains constant.

h1=h2=he=h

Q=(me-(m1-m2))*h

me=m1-me

Thus heat transfer=Q=0

6 0
3 years ago
Assume a program requires the execution of 50 x 106 FP instructions, 110 x 106 INT instructions, 80 x 106 L/S instructions, and
Pavlova-9 [17]

Answer:

Part A:

1.3568*10^{-5}=\frac{5300* New\  CPI_1+11660*1+8480*4+1696*2}{2*10^9\ Hz} \\ New\ CPI_1=-4.12

CPI cannot be negative so it is not possible to for program to run two times faster.

Part B:

1.3568*10^{-5}=\frac{5300*1+11660*1+8480*New\ CPI_3+1696*2}{2*10^9\ Hz} \\ New\ CPI_3=0.8

CPI reduced by 1-\frac{0.8}{4} = 0.80=80%

Part C:

New Execution Time=\frac{5300*0.6+11660*0.6+8480*2.8+1696*1.4}{2*10^9\ Hz}=1.81472*10^{-5}\ s

Increase in speed=1-\frac{1.81472*10^{-5}}{2.7136*10^{-5}} =0.33125= 33.125\%

Explanation:

FP Instructions=50*106=5300

INT  Instructions=110*106=11660

L/S  Instructions=80*106=8480

Branch  Instructions=16*106=1696

Calculating Execution Time:

Execution Time=\frac{\sum^4_{i=1} Number\ of\ Instruction*\ CPI_{i}}{Clock\ Rate}

Execution Time=\frac{5300*1+11660*1+8480*4+1696*2}{2*10^9\ Hz}

Execution Time=2.7136*10^{-5}\ s

Part A:

For Program to run two times faster,Execution Time (Calculated above) is reduced to half.

New Execution Time=\frac{2.7136*10^{-5}}{2}=1.3568*10^{-5}\ s

1.3568*10^{-5}=\frac{5300* New\  CPI_1+11660*1+8480*4+1696*2}{2*10^9\ Hz} \\ New\ CPI_1=-4.12

CPI cannot be negative so it is not possible to for program to run two times faster.

Part B:

For Program to run two times faster,Execution Time (Calculated above) is reduced to half.

New Execution Time=\frac{2.7136*10^{-5}}{2}=1.3568*10^{-5}\ s

1.3568*10^{-5}=\frac{5300*1+11660*1+8480*New\ CPI_3+1696*2}{2*10^9\ Hz} \\ New\ CPI_3=0.8

CPI reduced by 1-\frac{0.8}{4} = 0.80=80%

Part C:

New\ CPI_1=0.6*Old\ CPI_1=0.6*1=0.6\\New\ CPI_2=0.6*Old\ CPI_2=0.6*1=0.6\\New\ CPI_3=0.7*Old\ CPI_3=0.7*4=2.8\\New\ CPI_4=0.7*Old\ CPI_4=0.7*2=1.4

New Execution Time=\frac{\sum^4_{i=1} Number\ of\ Instruction*\ CPI_{i}}{Clock\ Rate}

New Execution Time=\frac{5300*0.6+11660*0.6+8480*2.8+1696*1.4}{2*10^9\ Hz}=1.81472*10^{-5}\ s

Increase in speed=1-\frac{1.81472*10^{-5}}{2.7136*10^{-5}} =0.33125= 33.125\%

8 0
3 years ago
HEY Y'ALL!!! WILL GIVE BRAINLEST AND THANKS+A LOT OF POINTS!!!!! So in class our teacher wants to help us think out of the box m
Elden [556K]

Answer:

2) phone

3) snake

Explanation:

NO EXPLANATION

5 0
3 years ago
Read 2 more answers
Other questions:
  • In C++ the declaration of floating point variables starts with the type name float or double, followed by the name of the variab
    14·1 answer
  • A cooking pan whose inner diameter is 20 cm is filled with water and covered with a 4-kg lid. If the local atmospheric pressure
    9·2 answers
  • A 3-phase, 50 Hz, 110 KV overhead line has conductors placed in a horizontal plane 3 m apart. Conductor diameter is 2.5 cm. If t
    6·1 answer
  • Determine the design angle ϕ (0∘≤ϕ≤90 ∘) between struts AB and AC so that the 400 lb horizontal force has a component of 600 lb
    10·1 answer
  • I don't know what is this​
    9·1 answer
  • I accidently peed my pants help me change me pls
    10·2 answers
  • A gas tank is known to have a thickness of 0.5 inches and an internal pressure of 2.2 ksi. Assuming that the maximum allowable s
    5·1 answer
  • What was the most important thing you learned this school year in your engineering class and why did you choose this thing
    15·1 answer
  • A window‐mounted air‐conditioning unit (AC) removes energy by heat transfer from a room, and rejects energy by heat transfer to
    13·1 answer
  • You are a planning aide on a team and are given the assignment of researching the historical significance and original blueprint
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!