1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kondor19780726 [428]
2 years ago
11

Problem Statement: Air flows at a rate of 0.1 kg/s through a device as shown below. The pressure and temperature of the air at l

ocation 1 are 0.2 MPa and 800 K and at location 2 the pressure and temperature are 0.75 MPa and 700 K. The surroundings are at 300 K and the surface temperature of the device is 1000 K. Determine the rate that the device performs work on its surroundings if the rate of heat transfer from the surface of the device to the environment is 1 kW. Justify your answer. Note that the flow direction for the air is not specified so you need to consider all possibilities for the direction of the airflow. Assume that the air is an ideal gas, that R

Engineering
1 answer:
Tema [17]2 years ago
8 0

Answer:

The answer is "+9.05 kw"

Explanation:

In the given question some information is missing which can be given in the following attachment.

The solution to this question can be defined as follows:

let assume that flow is from 1 to 2 then

Q= 1kw

m=0.1 kg/s

From the steady flow energy equation is:

m\{n_1+ \frac{v^2_1}{z}+ gz_1 \}+Q= m \{h_2+ \frac{v^2_2}{2}+ gz_2\}+w\\\\\ change \ energy\\\\0.1[1.005 \times 800]-1= 0.01[1.005\times 700]+w\\\\w= +9.05 \ kw\\\\

If the sign of the work performed is positive, it means the work is done on the surrounding so, that the expected direction of the flow is right.

You might be interested in
What are the best collages for architectural learning?
Sati [7]

Answer:

I don't where you live, but I named few around the world. Some are Virgi..nia Tech, Unive..rsity of Flor..dia, and Oklah..oma Stat..e Univ..ersity.

4 0
2 years ago
A well-insulated tank in a vapor power plant operates at steady state. Saturated liquid water enters at inlet 1 at a rate of 125
kompoz [17]

Answer:

a. The mass flow rate (in lbm/s) is 135lbm/s

b. The temperature (in o F) is 200.8°F

Explanation:

We assume that potential energy and kinetic energy are negligible and the control volume operates at a steady state.

Given

a. The mass flow rate (in lbm/s) is 135lbm/s

b.

m1 = Rate at inlet 1 = 125lbm/s

m2 = Rate at inlet 2 = 10lbm/s

The mass flow rate (in lbm/s) is calculated as m1 + m2

Mass flow rate = 125lbm/s + 10lbm/s

Mass flow rate = 135lbm/s

Hence, the mass flow rate (in lbm/s) is 135lbm/s

b. To calculate the temperature.

First we need to determine the enthalpy h1 at 14.7psia

Using table A-3E (thermodynamics)

h1 = 180.15 Btu/Ibm

h2 at 14.7psia and 60°F = 28.08 Btu/Ibm

Calculating h3 using the following formula

h3 = (h1m1 + h2m2) / M3

h3 = (180.15 * 125 + 28.08 * 10)/135

h3 = 168.8855555555555

h3 = 168.89 Btu/Ibm

To get the final temperature; we make use of table A-2E of thermodynamics.

Because h3 < h1, it means the liquid is at a compressed state.

The corresponding temperature at h3 = 168.89 is 200.8°F

The temperature (in o F) is 200.8°F

6 0
3 years ago
What do you think the top TWO game elements are that directly contribute to player immersion?
fredd [130]
Sound (like music and background sound) and detail. The music and background sound is what sets the mood for the game. In horror games, the sound is sometimes uneasy to make the player feel anxious, and when something chases you the music turns into fast-pace and making the player scared and feel that adrenaline. The detail also is a great factor. The more realistic a game is, the more it feels like real life and determines if the player will get a real reaction from the game.
6 0
2 years ago
A friend would like you to build an "electronic eye" for use as a fake security device. The device consists of three lights line
mars1129 [50]

Answer and explanation:

The graphical representation of the electronic eye

The state table showing

the present state

input

Next state and

the output

are shown in the attached file

8 0
3 years ago
Read 2 more answers
A 1000-MVA, 20-kV, 60-Hz, three-phase generator is connected through a 1000-MVA, 20-kV, Dy345-kV, Y transformer to a 345-kV circ
aniked [119]

Answer:

(a) the subtransient current through the breaker in per-unit and in kA rms =   71316.39kA

(b) the rms asymmetrical fault current the breaker interrupts, assuming maximum dc offset. = 152KA

Explanation:

check the attached files for explanation

7 0
3 years ago
Other questions:
  • Water circulates throughout a house in a hot water heating system. If the water is pumped at a speed of 0.50m/s through a 4.0-cm
    5·1 answer
  • Barry wants to convert mechanical energy into electric energy. What can he use?
    5·2 answers
  • What is the base unit in standard measurement
    13·2 answers
  • All of the following are categories for clutch covers except
    11·1 answer
  • You must yield the right-of-way to all of the following EXCEPT:
    8·1 answer
  • Please help me with this. Picture
    10·1 answer
  • A positive slope on a position-time graph suggests
    15·1 answer
  • Match the scenario to the related government program.
    8·1 answer
  • Propose any improvements if there are any in brake system
    7·1 answer
  • Sometimes we need to create heat, such as in circuit breakers and rear window
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!