1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ollegr [7]
3 years ago
9

A 0.4-mm-diameter glass tube is inserted into water at 20∘C in a cup. The surface tension of water at 20∘C is σs=0.073N/m. The c

ontact angle can be taken as zero degrees. The capillary rise of water in the tube is (a) 2.9 cm (b) 7.4 cm (c) 5.1 cm (d) 9.3 cm (e) 14.0 cm
Engineering
2 answers:
IceJOKER [234]3 years ago
7 0
<h2>Answer:</h2>

(b) 7.4cm

<h2>Explanation:</h2>

Given the following variables:

the radius of a glass capillary tube as r,

the coefficient of surface tension of the liquid in the glass as σ,

the density of the liquid as ρ,

the angle of contact between the liquid and the walls of the tube as θ and;

the capillary rise or height to which the liquid rises in the tube as h.

The variables are related by the following relation;

h = (2 x σ cos θ) / (r x ρ x g)           -------------------------------(i)

Where;

g = acceleration due to gravity.

Therefore from the question;

diameter of tube = 0.4mm

=> radius, r  = (0.4 / 2)mm = 0.2mm = 0.0002m

θ = contact angle = 0°

σ = surface tension coefficient =  σs = 0.073N/m

ρ = density of liquid (water) = 1000kg/m³  [a constant]

Taking g = 9.81m/s², substitute these values into equation (i) to calculate the capillary rise, h, as follows;

h = (2 x 0.073 cos 0) / (0.0002 x 1000 x 9.81)

h = (2 x 0.073 x 1) / (1.962)

h = 0.074m

Convert the result to cm by multiplying by 100 as follows;

0.074m x 100 = 7.4cm

Therefore the capillary rise of water in the tube is 7.4cm

Nikitich [7]3 years ago
4 0

Answer:

7.4 cm

Explanation:

The capillary rise of the water in the tube can be calculated by the formula

h = 2Tcosθ / rρg

where T, surface tension = 0.073N/m , r radius = 0.4 mm/2 = 0.2 mm x 1 m / 1000 mm = 0.2 × 10⁻³m, ρ density of water = 1000 kg/m³ and g acceleration due to gravity = 9.81 m/s²

h = 2 × 0.073N/m cos0 / (0.2 × 10⁻³m ×  1000 kg/m³ × 9.81 m/s²) = 0.0744 m = 7.44 cm

You might be interested in
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
3 years ago
Select the correct answer.
MAVERICK [17]

Answer:crane and engine I guess

Explanation:

8 0
3 years ago
Select the characteristics of an ideal operational amplifier.
SpyIntel [72]

Answer:

Numbers 4, 6, & 7 are correct

Explanation:

4- this allows the op amp to have zero voltage so that maximum voltage is transferred to output load.

6- this ensures that op amp doesn't cause loading in the original circuit, high input impedance would not deter the circuit from pulling current from it.

7- high difference between upper and lower frequencies.

3 0
3 years ago
While discussing the testing of a Hall-effect switch:
sergejj [24]

Answer:

your answer is technician A

6 0
2 years ago
Which of the following power tools has a revolving vertical shaft and a cutter? *
Morgarella [4.7K]
Saber saw I’m pretty sure
4 0
2 years ago
Read 2 more answers
Other questions:
  • 11.A heat engine operates between two reservoirs at 800 and 20°C. One-half of the work output of the heat engine is used to driv
    6·1 answer
  • Identify the advantages of using 6 tube passes instead of just 2 of the same diameter in shell-and-tube heat exchanger.What are
    10·1 answer
  • Oil with a density of 850 kg/m3 and kinematic viscosity of 0.00062 m2 /s is being discharged by a 8-mm-diameter, 40-m-long horiz
    5·1 answer
  • 4. The friction point is the point
    12·1 answer
  • How many types of engineering specialist are there?
    14·1 answer
  • Give two causes that can result in surface cracking on extruded products.
    11·1 answer
  • A Carnot engine is operated between two heat reservoirs at temperatures of 520 K and 300 K. It receives heat from the 520 K rese
    8·1 answer
  • simple Brayton cycle using air as the working fluid has a pressure ratio of 10. The minimum and maximum temperatures in the cycl
    7·1 answer
  • Task Three :Write a C++ program to read temperature
    15·1 answer
  • In the case of a collision causing property damage, injury, or death, you are required to ____
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!