Answer: Another useful feature of the periodic table is that most tables provide all the information you need to balance chemical reactions at a glance. The table tells each element's atomic number and usually its atomic weight. The typical charge of an element is indicated by its group.
Explanation:
Answer:
5×10⁵ L of ammonia (NH3)
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
N2 + 3H2 —> 2NH3
From the balanced equation above, we can say that:
3 L of H2 reacted to produce 2 L of NH3.
Finally, we shall determine the volume of ammonia (NH3) produced by the reaction of 7.5×10⁵ L of H2. This can be obtained as illustrated below:
From the balanced equation above,
3 L of H2 reacted to produce 2 L of NH3.
Therefore, 7.5×10⁵ L of H2 will react to produce = (7.5×10⁵ × 2)/3 = 5×10⁵ L of NH3.
Thus, 5×10⁵ L of ammonia (NH3) is produced from the reaction.
Answer:
1134
Explanation:
(the ones place was rounded up). 1133.981 is the unrounded answer.
Answer:
Alkanes, alkenes and alkynes are simple hydrocarbon chains with no functional groups. Alkanes are identified because the carbon chain has only single bonds. Alkenes have at least one double bond and alkynes have at least one triple bond. The most common alkyne is ethyne, better known as acetylene.
Answer:
В. No, because the mass of the reactants is less than the mass of the products.
Explanation:
Chemical equation:
NaBr + Cl₂ → 2NaCl + Br₂
The given equation is not balanced because number of moles of sodium and bromine atoms are less on reactant side while more on the product side.
There are one mole of sodium and one mole of bromine atom on left side of equation while on right side there are 2 moles of bromine and 2 moles of sodium atom are present. The number of moles of chlorine atoms are balanced.
Balanced chemical equation:
2NaBr + Cl₂ → 2NaCl + Br₂
Now equation is balanced. Number of moles of sodium , chlorine and bromine atoms are equal on both side.