Answer:
pH = 10.9
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to say that the undergoing reaction between this buffer and OH⁻ promotes the formation of more CO₃²⁻ because it acts as the base, we can do the following:

The resulting concentrations are:
![[CO_3^{2-}]=\frac{0.1435mol}{0.25L}=0.574M \\](https://tex.z-dn.net/?f=%5BCO_3%5E%7B2-%7D%5D%3D%5Cfrac%7B0.1435mol%7D%7B0.25L%7D%3D0.574M%20%5C%5C)
![[HCO_3^{-}]=\frac{0.0265mol}{0.25L}=0.106M](https://tex.z-dn.net/?f=%5BHCO_3%5E%7B-%7D%5D%3D%5Cfrac%7B0.0265mol%7D%7B0.25L%7D%3D0.106M)
Thus, since the pKa of this buffer system is 10.2, the change in the pH would be:

Which makes sense since basic OH⁻ ions were added.
Regards!
The second thesis statement is perfect. It supports the claim and presents main idea.
Iron (iii) chloride is obtained by vapor condensation from the reaction between chlorine gas and iron fillings.
<h3>How can iron (iii) chloride be formed from iron fillings?</h3>
Iron (ii) chloride can be formed from iron fillings in the laboratory as follows:
- Iron fillings + Cl₂ → FeCl₃
Chlorine gas is introduced into a reaction vessel containing iron fillings and the iron (iii) chloride vapor formed is obtained by condensation.
In conclusion, iron (iii) chloride is formed by the the direct combination of iron fillings and chlorine gas.
Learn more about iron (iii) chloride at: brainly.com/question/14653649
#SPJ1
Answer:
An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is amenable to analysis under statistical mechanics.