<span>Mass of nitrogen = 14.0067
</span>
Mass of oxygen = 15.9994
In this compound nitrogen = 36.86 /
14.0067 = 2.63
<span>And oxygen = 63.14 / 15.9994 = 3.95 <span>
now we have: N----- 2.63 and O----3.95
by dividing both with the smallest number we get
</span></span>
<span>N-------2.63/2.63 = 1<span>
<span>O-------3.95/2.63 = 1.5
To get whole numbers we multiply both by 2
</span></span></span>
N= 1 x 2 = 2
And O = 1.5 x 2= 3
<span>So, the empirical formula is N</span>₂O₃.
Answer:
The star is a special star
Explanation:
it is a binary star it is dominated by a luminous main sequence of star! it has a magnitude of -1.46. Sirius A's apparent bright ness can be attributed both to its inherited luminosity! 20 times that of thr sun anf its proximity. At just 8.7 Light years away sirius is the seventh closest star to earth.
Answer:
82.416 g of KNO
₃ is needed to produce 510.0 mL of a 1.6 M KNO
₃ solution.
Explanation:
Since molarity is the number of moles of solute that are dissolved in a given volume, calculated by dividing the moles of solute by the volume of the solution, the following rule of three can be applied: if in 1 L (1,000 mL) of KNO₃ there are 1.6 moles of the compound present, in 510 mL how many moles will there be?

moles= 0.816
Being the molar mass of the elements:
- K: 39 g/mole
- N: 14 g/mole
- O: 16 g/mole
So the molar mass of the compound KNO₃ is:
KNO₃= 39 g/mole + 14 g/mole + 3*16 g/mole= 101 g/mole
Now I can apply the following rule of three: if in 1 mole of KNO₃ there are 101 g, in 0.816 moles how much mass is there?

mass= 82.416 grams
<u><em>82.416 g of KNO
₃ is needed to produce 510.0 mL of a 1.6 M KNO
₃ solution.</em></u>
Answer:
sorry i donntttt understand make it clear
The solution that conducts electricity and has a pH value of 7 would most likely be a neutral solution. Water is among the best examples of a neutral solution. When the pH of a solution is considered to be lesser than 7, it is an acid, while if the pH is greater than 7, it is considered to be a basic solution.