Depression of a freezing point of the solutions depends on the number of particles of the solute in the solution.
1 mol of C6H12O6 after dissolving in water still be 1 mol, because C6H12O6 does no dissociate in water.
1 mol of C2H5OH after dissolving in water still be 1 mol, because C2H5OH does no dissociate in water.
1 mol of NaCl after dissolving in water gives 2 mol of particles (ions), because NaCl is a strong electrolyte(as salt) and completely dissociates in water.
NaCl ----->Na⁺ + Cl⁻
1 mol of CH3COOH after dissolving in water gives more than 1 mol but less than 2 moles, because CH3COOH is a weak electrolyte (weak acid) and dissociates only partially.
So, most particles of the solute is going to be in the solution of NaCl,
so<span> the lowest freezing point has the aqueous solution of NaCl.</span>
An exothermic process is one that gives off heat.
Explanation:
This heat is transferred to the surroundings. An endothermic process is one in which heat has to be supplied to the system from the surroundings.
Answer:
1.2 liters.
Explanation:
Focus on the 4th digit: that's the ones column. The 3rd digit is the decimal place, just be sure to round up.
Pretty sure it's b but not an definitely
The prediction is that B. The electrons will flow to the zinc anode where a negative charge will build up and eventually halt the reaction.
<h3>What is zinc?</h3>
This is known as a chemical element, of the periodic table, that is essential to life and is one of the most widely used metals. Zinc is of considerable commercial importance.
Without the salt bridge, positive and negative charges will build up around the electrodes causing the reaction to stop.
Hence, we know that the purpose of the salt bridge is to keep the solutions electrically neutral and allow the free flow of ions from one cell to another.
Read more about<em> zinc</em> here:
brainly.com/question/25764334
#SPJ1