To determine the molar mass, you need to get the atomic mass of the molecule. To do this, check the periodic table for the atomic mass or average atomic weight of each element.
Mg = 24.305 x 1 = 24.305 amu
O = 15.9994 x 2 =31.9988 amu
H = 1.0079 x 2 = 2.0158 amu
Then, add all the components to get the atomic mass of the molecule.
24.305 amu + 31.9988 amu + 2.0158 amu = 58.3196 amu
The atomic mass is just equivalent to its molar mass.
So, the molar mass of Magnesium hydroxide (Mg(OH)2) is 58.3196 g/mol.
<span>Carbon must share 4 electrons total with the the two Oxygen atoms in order to fill it's outer electron shell, and each Oxygen atom must share 2 electrons with the Carbon atom to fill their electron shells. Therefore, in total 8 electrons must be shared (4+2+2=8)</span>
In this case a double displacement reaction will take place.
1) To find the change in enthalpy, determine the difference between the potential energy of the products and the potential energy of the reactants. (on this diagram, C-A) To find the activation energy, find the difference between the potential energy of the reactants and the "peak" of the curve (on this diagram, B-A). For this diagram, both the enthalpy and activation energy are positive.
2) If the reaction was exothermic, enthalpy would be negative, and the potential energy of the reactants would be greater than the potential energy of the products.
Answer:
51.66 mol H2O (steam)
Explanation:
5.74 mol C3H18 x 18 mol H2O/ 2 mol C3H18 = 51.66 mol H2O (steam)