Answer:
2H+(aq) + 2OH-(aq) → 2H2O(l)
Explanation:
Step 1: The balanced equation
2HCl(aq)+Ca(OH)2(aq) → 2H2O(l)+CaCl2(aq)
This equation is balanced, we do not have the change any coefficients.
Step 2: The netionic equation
The net ionic equation, for which spectator ions are omitted - remember that spectator ions are those ions located on both sides of the equation - will.
2H+(aq) + 2Cl-(aq) + Ca^2+(aq) + 2OH-(aq) → 2H2O(l) + Ca^2+(aq) + 2Cl-(aq)
After canceling those spectator ions in both side, look like this:
2H+(aq) + 2OH-(aq) → 2H2O(l)
Answer: C.)
Explanation:
i got it right on a unit test!
but it might be something else if there arranged different!
sorry!
Answer: 122 moles
Procedure:
1) Convert all the units to the same unit
2) mass of a penny = 2.50 g
3) mass of the Moon = 7.35 * 10^22 kg (I had to arrage your numbers because it was wrong).
=> 7.35 * 10^22 kg * 1000 g / kg = 7.35 * 10^ 25 g.
4) find how many times the mass of a penny is contained in the mass of the Moon.
You have to divide the mass of the Moon by the mass of a penny
7.35 * 10^ 25 g / 2.50 g = 2.94 * 10^25 pennies
That means that 2.94 * 10^ 25 pennies have the mass of the Moon, which you can check by mulitiplying the mass of one penny times the number ob pennies: 2.50 g * 2.94 * 10^25 = 7.35 * 10^25.
5) Convert the number of pennies into mole unit. That is using Avogadros's number: 6.022 * 10^ 23
7.35 * 10^ 25 penny * 1 mol / (6.022 * 10^ 23 penny) = 1.22* 10^ 2 mole = 122 mol.
Answer: 122 mol