Answer:
Explanation:
k = Coulomb constant =
Q = Charge
r = Distance = 8 cm
R = Radius = 4 cm
Electric field is given by
Volume charge density is given by
The volume charge density for the sphere is
The magnitude of the electric field is
Answer:
n_cladding = 1.4764
Explanation:
We are told that θ_max = 5 °
Thus;
θ_max + θ_c = 90°
θ_c = 90° - θ_max
θ_c = 90° - 5°
θ_c = 85°
Now, critical angle is given by;
θ_c = sin^(-1) (n_cladding/n_core)
sin θ_c = (n_cladding/n_core)
n_cladding = (n_core) × sin θ_c
Plugging in the relevant values, we have;
n_cladding = 1.482 × sin 85
n_cladding = 1.4764
Answer:
<em>a) below the observed position</em>
<em>b) directly at the observed position</em>
<em></em>
Explanation:
If I'm standing on the bank of a stream, and I wish to spear a fish swimming in the water out in front of me, I would aim below the observed fish to make a direct hit. This is because the phenomenon of refraction of light in water causes the light coming from the fish is refract away from the normal as it passes into the air and into my eyes.
If I'm to zap the fish with a taser, I would aim directly at the observed fish because the laser (a form of concentrated light waves) will refract into the water, taking the same path the light from the fish took to get to my eyes.
Vaporization of a sample of liquid is a phase transition from the liquid phase to the gas phase.
Answer:
75k
Explanation:
You can see solution in the picture