Answer:
Explanation:
The relation between time period of moon in the orbit around a planet can be given by the following relation .
T² = 4 π² R³ / GM
G is gravitational constant , M is mass of the planet , R is radius of the orbit and T is time period of the moon .
Substituting the values in the equation
(.3189 x 24 x 60 x 60 s)² = 4 x 3.14² x ( 9380 x 10³)³ / (6.67 x 10⁻¹¹ x M)
759.167 x 10⁶ = 8.25 x 10²⁰ x 39.43 / (6.67 x 10⁻¹¹ x M )
M = .06424 x 10²⁵
= 6.4 x 10²³ kg .
Explanation:
For each object, the initial potential energy is converted to rotational energy and translational energy:
PE = RE + KE
mgh = ½ Iω² + ½ mv²
For the marble (a solid sphere), I = ⅖ mr².
For the basketball (a hollow sphere), I = ⅔ mr².
For the manhole cover (a solid cylinder), I = ½ mr².
For the wedding ring (a hollow cylinder), I = mr².
If we say k is the coefficient in each case:
mgh = ½ (kmr²) ω² + ½ mv²
For rolling without slipping, ωr = v:
mgh = ½ kmv² + ½ mv²
gh = ½ kv² + ½ v²
2gh = (k + 1) v²
v² = 2gh / (k + 1)
The smaller the value of k, the higher the velocity. Therefore:
marble > manhole cover > basketball > wedding ring
Answer:
At 100°C, the pH of pure water is 6.14. That is the neutral point on the pH scale at this higher temperature. A solution with a pH of 7 at this temperature is slightly alkaline because its pH is a bit higher than the neutral value of 6.14.
Explanation:
nonde
Answer:
Heat
Explanation:
Because chemical energy is stored, it is a form of potential energy. When a chemical reaction takes place, the stored chemical energy is released. Heat is often produced as a by-product of a chemical reaction – this is called an exothermic reaction.
Hope this helped.
Well,
Typically, a substance is under 1 atmosphere of pressure, or 1 atm. More than 1 atm means there is more pressure than that which the earth's atmosphere exerts on an object near the surface of the earth.
If a liquid is given enough energy, and the atmospheric pressure remains constant, the liquid will turn into a gas. In the case of water, it will turn into water vapor at 100 °C. However, if you increase the pressure to greater than 1 atm, the water will be pushed together, keeping it liquid.