Given :
Walk in forward direction is 30 m .
Walk in backward direction is 25 m .
To Find :
The distance and displacement .
Solution :
We know , distance is total distance covered and displacement is distance between final and initial position .
So , distance travelled is :
D = 30 + 25 m = 55 m .
Now , we first move 30 m in forward direction and then 25 m in backward direction .
So , displacement is :
D = 30 - 25 m = 5 m .
Therefore , distance and displacement covered is 55 m and 5 m respectively .
Hence , this is the required solution .
Given that,
Atmospheric Pressure = 14.7 psi
Cooking Pressure = 14.7 +11.1 = 25.8 psi
Take, Atmospheric Temperature = 25 °C
Cooking Temperature = ??
Since, we know that Gas equation is given by:
PV = nRT
or
P ∝ T
P1 / T1 = P2 / T2
14.7/ 25 = 25.8/ T2
T2 = 25*25.8/14.7
T2 = 43.87 °C
The cooking pressure will be 43.87 °C.
Answer:
12 m/s
Explanation:
Speed is distance moved per unit time and expressed as
S=d/t
S is speed, d is distance and t is time.
When at rest for five minutes, distance moved is zero hence speed is 0/5=0 m/s
When having moved 120 m for 5 s then speed is
S=120/5=24 m/s
Average speed is the average of these two speeda
Average speed=(24+0)÷2=24/2=12 m/s
Therefore, average speed is 12 m/s
Answer:
Explanation:
Hi!
In order to obtain the Lagrangian of the system we must first write the Kinetic and Potential Energies. Lets orient our axes such that the axis of the cone coincide with the z axis. In cilindrical coordinates we have
- (1)
But, since the particle is constrained to move on the surface of the cilinder, we have the following relation between r and z:

or:
- (2)
and:
replacing (2) in (1) we obtain:
- (3)
Now the kinetic energy is given as:
- (4)
And the potential energy is given by:

So the Langrangian is given by:

And the equations of motion are:
For θ

For r

Obtained from the Euler-Langrange equations
Here the conserved quantity is given by the first equation of motion, namely:

Which is the magnitude of the angular momentum
By "solution" it means a course of action that, once carried out, brings about some desired state of affairs. The use of engineer in this context is as a verb meaning "to arrange or bring about through skillful, artful contrivance."