1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bas_tet [7]
3 years ago
5

Nucleus A decays into the stable nucleus B with a half-life of 22.07 s. At t=0 s there are 1,293 A nuclei and no B nuclei. At wh

at time will there be 779 B nuclei?
Physics
1 answer:
Alexeev081 [22]3 years ago
5 0

Answer:

29.38 seconds

Explanation:

Half life, T = 22.07 s

No = 1293

Let N be the number of atoms left after time t

N = 1293 - 779 = 514

By the use of law of radioactivity

N=N_{0}e^{-\lambda t}

Where, λ is the decay constant

λ = 0.6931 / T = 0.6931 / 22.07 = 0.0314 decay per second

so,

514=1293e^{-0.0314t}

2.5155=e^{0.0314t}

take natural log on both the sides

0.9225 = 0.0314 t

t = 29.38 seconds

You might be interested in
A piston above liquid in a closed container has an area of 1m2. The piston carries a load of 350 kg. What will be the external p
grandymaker [24]
<span>Pressure = force / area</span>

I assume that 350kg is the mass 
Therefore, 

350 x 9.8 (gravity) = 3430N

3430 / 1 = 3430Pa

3.43 KPa


5 0
3 years ago
Read 2 more answers
Consider three planets. All have the same mass as Earth, but with different radii (from largest to smallest: Planet 1, 2, 3). Fo
LuckyWell [14K]

Answer:

option C

Explanation:

given,

mass of the three planet is same

radius of the planets are

R₁ > R₂ > R₃

expression of escape velocity

v = \sqrt{\dfrac{2GM}{R}}

G is the gravitational constant

M is the mass of the planet

R is the radius of the planet

from the above expression we can clearly conclude that the escape velocity is inversely proportional to the radius of the Planet.

radius of planet increases escape velocity decreases.

Hence planet 3 has the smallest radius so the escape velocity of the third planet will be maximum.

The correct answer is option C

3 0
3 years ago
A wire 2.80 m in length carries a current of 5.20 A in a region where a uniform magnetic field has a magnitude of 0.430 T. Calcu
galina1969 [7]

Question:

A wire 2.80 m in length carries a current of 5.20 A in a region where a uniform magnetic field has a magnitude of 0.430 T. Calculate the magnitude of the magnetic force on the wire assuming the following angles between the magnetic field and the current.

(a)60 (b)90 (c)120

Answer:

(a)5.42 N (b)6.26 N (c)5.42 N

Explanation:

From the question

Length of wire (L) = 2.80 m

Current in wire (I) = 5.20 A

Magnetic field (B) = 0.430 T

Angle are different in each part.

The magnetic force is given by

F=I \times B \times L \times sin(\theta)

So from data

F = 5.20 A \times 0.430 T \times 2.80 sin(\theta)\\\\F=6.2608 sin(\theta) N

Now sub parts

(a)

\theta=60^{o}\\\\Force = 6.2608 sin(60^{o}) N\\\\Force = 5.42 N

(b)

\theta=90^{o}\\\\Force = 6.2608 sin(90^{o}) N\\\\Force = 6.26 N

(c)

\theta=120^{o}\\\\Force = 6.2608 sin(120^{o}) N\\\\Force = 5.42 N

3 0
3 years ago
If force and displacement are in opposite directions, will work be positive or negative?
eimsori [14]
It would be negative regardless of what you define as a positive direction.
8 0
3 years ago
Planet 1 orbits Star 1 and Planet 2 orbits Star 2 in circular orbits of the same radius. However, the orbital period of Planet 1
hichkok12 [17]

Answer:

The mass of Star 2 is Greater than the mass of Start 1. (This, if we suppose the masses of the planets are much smaller than the masses of the stars)

Explanation:

First of all, let's draw a free body diagram of a planet orbiting a star. (See attached picture).

From the free body diagram we can build an equation with the sum of forces between the start and the planet.

\sum F=ma

We know that the force between two bodies due to gravity is given by the following equation:

F_{g} = G\frac{m_{1}m_{2}}{r^{2}}

in this case we will call:

M= mass of the star

m= mass of the planet

r = distance between the star and the planet

G= constant of gravitation.

so:

F_{g} =G\frac{Mm}{r^{2}}

Also, if the planet describes a circular orbit, the centripetal force is given by the following equation:

F_{c}=ma_{c}

where the centripetal acceleration is given by:

a_{c}=\omega ^{2}r

where

\omega = \frac{2\pi}{T}

Where T is the period, and \omega is the angular speed of the planet, so:

a_{c} = ( \frac{2\pi}{T})^{2}r

or:

a_{c}=\frac{4\pi^{2}r}{T^{2}}

so:

F_{c}=m(\frac{4\pi^{2}r}{T^{2}})

so now we can do the sum of forces:

\sum F=ma

F_{g}=ma_{c}

G\frac{Mm}{r^{2}}=m(\frac{4\pi^{2}r}{T^{2}})

in this case we can get rid of the mass of the planet, so we get:

G\frac{M}{r^{2}}=(\frac{4\pi^{2}r}{T^{2}})

we can now solve this for T^{2} so we get:

T^{2} = \frac{4\pi ^{2}r^{3}}{GM}

We could take the square root to both sides of the equation but that would not be necessary. Now, the problem tells us that the period of planet 1 is longer than the period of planet 2, so we can build the following inequality:

T_{1}^{2}>T_{2}^{2}

So let's see what's going on there, we'll call:

M_{1}= mass of Star 1

M_{2}= mass of Star 2

So:

\frac{4\pi^{2}r^{3}}{GM_{1}}>\frac{4\pi^{2}r^{3}}{GM_{2}}

we can get rid of all the constants so we end up with:

\frac{1}{M_{1}}>\frac{1}{M_{2}}

and let's flip the inequality, so we get:

M_{2}>M_{1}

This means that for the period of planet 1 to be longer than the period of planet 2, we need the mass of star 2 to be greater than the mass of star 1. This makes sense because the greater the mass of the star is, the greater the force it applies on the planet is. The greater the force, the faster the planet should go so it stays in orbit. The faster the planet moves, the smaller the period is. In this case, planet 2 is moving faster, therefore it's period is shorter.

6 0
3 years ago
Other questions:
  • According to Dutch scientist Christiaan Huygens, what was light made of? atoms particles waves electrons
    9·1 answer
  • Is Their A Video On The Pysical Thingie
    8·1 answer
  • How does temperature change affect surface tension
    10·1 answer
  • Which of the following has the greatest number of particles A) 1 mole of Na B)22.990g of Na C) 1 mole of Be D) 9.012 g of Be E)
    11·2 answers
  • A bubble at the bottom of the lake to the surface within 10.0 seconds what is the depth of the lake
    8·1 answer
  • PLS ANSWER FAST WILL GIVE BRAINLY!!!<br><br><br> How can you know if something has energy?
    7·1 answer
  • Kinds of solar power stations
    13·1 answer
  • Carlota does 2000 J of work on a machine. The machine does 500 J of work. What is the efficiency of the
    7·2 answers
  • A carpenter lifts a 10 kg piece of wood to his shoulder 1.5 m above the ground. What is the wood's potential energy on the carpe
    11·1 answer
  • Which is the best explanation for his results?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!