D, the more liquid there is, the less the temperature will be affected
2. 3H2 + N2 means you have 6 Hs and 2 Ns. NH3 has one N and 3 Hs, so you need 2 NH3s in order to have the 2 and 6 of each that you need on both sides of the reaction.
Answer:
The reasons why the seemingly floating bubbles disappear was that they tend to loss their latent heat to the water molecules at the surface water.
Explanation:
Heat energy has a considerable effect on the velocity of molecules including water. The water molecules below the container will receive much more heat energy than those above it. This heat energy in the form of specific heat capacity and latent heat that result in the increase in the speed of individual molecules of water and finally to the escape of the molecules to a colder region of the container, in this case the upper region. At the collision of the bottom water to the surface water, they tend to exchange their heat content, the hotter molecules will lose their heat to the cold ones. When the formerly hot molecules encounter this, it will result in lowering the temperature and consequentially to the reduction of their movement, once in the form of bubble, now become ordinary water. This convectional transfer of heat energy will continue until the whole system has a uniform temperature depending on the consistency of the heat source.
Salinity has units of grams NaCl or salt per kilogram solution. We can use the density given and the molar mass of the salt to convert from salinity to molarity. We do as follows:
( 5.6 g / kg ) ( 1.03 kg / L ) ( 1 mol / 58.44 g ) = 0.0987 mol NaCl / L
Answer:
The volume of NO₂ gas collected over water at 25.0 °C is 1.68 Liters.
Explanation:

Moles of copper = 
According to reaction, 1 mol of copper gives 2 moles of nitrogen dioxide gas.
Then 0.03613 moles of copper will give:
of nitrogen dioxide gas
Moles of nitrogen dioxide gas = n = 0.06326 mol
Pressure of the gas = P
P = Total pressure - vapor pressure of water
P = 726 mmHg - 23.8 mmHg = 702.2 mmHg
P = 0.924 atm (1 atm = 760 mmHg)
Temperature of the gas = T = 25.0°C =298.15 K
Volume of the gas = V


V = 1.68 L
The volume of NO₂ gas collected over water at 25.0 °C is 1.68 Liters.