1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga nikolaevna [1]
3 years ago
13

RELOSTEN

Mathematics
1 answer:
cupoosta [38]3 years ago
4 0

Answer:uhh

Step-by-step explanation:

... well i believe 24681012 is the answer

You might be interested in
Help me solve for x and y .
Olegator [25]

Answer:

Step-by-step explanation:

7 0
2 years ago
Read 2 more answers
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
What did sin theta/theta whisper worksheet answer key worksheet?
djyliett [7]
To evaluate
\lim_{\theta \to 0}  \frac{\sin\theta}{\theta}

First, we input 0, for theta in the function to obtain:
\frac{\sin0}{0} = \frac{0}{0}

This is an indeterminate form.

So, we apply L'Hopital's rule by differentiating the numerator and the denominator as follows:

\lim_{\theta \to 0} \frac{\sin\theta}{\theta}=\lim_{\theta \to 0} \frac{ \frac{d}{d\theta} (\sin\theta)}{\frac{d}{d\theta}\theta} \\  \\ =\lim_{\theta \to 0} \frac{\cos\theta}{1}=\cos0=1
7 0
3 years ago
Can anyone help me out ?
svlad2 [7]

Answer:

what is your question.. if any problems then I will try to solve if I know.

4 0
3 years ago
Plz help ASAP!!!!!!!!​
lilavasa [31]

Answer:

The answer is 95.03

Step-by-step explanation

The formula that I used

A=πr^2

Area  = π·5.5^2 ≈ 95.03318

Hope that helps :)

4 0
3 years ago
Other questions:
  • Is 85 prime or composite
    6·1 answer
  • The dataset below shows the number of cars parked in the restaurant parking lot during the lunch hour each day for two weeks:
    14·2 answers
  • Choose the correct NAME for the figure.*<br> D<br> E<br> F<br> OEf<br> ODE<br> ODEF<br> Of
    9·2 answers
  • 42,32,30,32,44,36,45,43<br> What is the median
    14·1 answer
  • Jesse needs 13 gallons of paint to finish painting the exterior of his band .if he uses 10 quarts of paint for the doors ,how ma
    6·1 answer
  • Which expression is equivalent to 60 Σ n=1 (2n − 1)2 ? Check all that apply.
    13·2 answers
  • Match each scenario with the integer that can be used to describe it.
    11·2 answers
  • What is the area<br> of the figure?
    12·1 answer
  • What is the equation of the line that passes through the point (-2,0) and has a<br> slope of -2?
    9·1 answer
  • What is this i HATE math Oh MY GOD
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!