Answer:
The time for the cake to cool off to room temperature is
approximately 30 minutes.
Let
=
F be the temperature and T that of the body
Explanation:
Our Tm = 70, the initial-value problem is
= <em>k</em>(T − 70), T(0) = 300
Solving the equation, we get
= <em>kdt</em>
In [T-70]= <em>kt </em>+
T = 70 +

Finding he value for
using the initial value of T (0)= 300, therefore we get:
300=70+
= 230 therefore
T= 70+ 230 
Finding the value for <em>k </em>using T (3) = 200, therefore we get
T (3) = 200
= 
<em>K </em>=
in 
= -0.19018
Therefore
T(t) = 70+230
A :-) for this question , we should apply
F = ma
Given - F = 12 N
a = 0.20 m/s^2
Solution -
F = ma
12 = m x 0.20
m = 12 by 0.20
m = 60 kg
.:. The mass is 60 kg.
Answer:
2.521 (A); 14.0924 (V)
Explanation:
more info in the attachment, the answers are marked with red colour.
To develop this problem it is necessary to apply the concepts related to Gravitational Potential Energy.
Gravitational potential energy can be defined as

As M=m, then

Where,
m = Mass
G =Gravitational Universal Constant
R = Distance /Radius
PART A) As half its initial value is u'=2u, then



Therefore replacing we have that,

Re-arrange to find v,



Therefore the velocity when the separation has decreased to one-half its initial value is 816m/s
PART B) With a final separation distance of 2r, we have that

Therefore




Therefore the velocity when they are about to collide is 
Answer:
CALCIUM IDENINE ADEININE AND PHOSPHATE
Explanation: