The ΔG of a reaction would be at the minimum when... Group of answer choices the equilibrium constant is equal to 1 (i.e., the r
eactant and product concentrations are always equal). the reactant and product concentrations don't change over time (the system is at equilibrium). the entropy has reached its maximum positive value. the reaction goes to completion. the reaction is very slow
the equilibrium constant is equal to 1 (i.e., the reactant and product concentrations are always equal).
Explanation:
ΔG is a symbol related to Gibbs free energy, which is a physical quantity related to thermodynamics. ΔG refers to the difference between the change in enthalpy (and sometimes entropy) and the temperature of a chemical reaction.
Gibbs free energy is very useful for measuring the work done between the reactants in a reaction. It is calculated using the formula: ΔG = change in enthalpy - (temperature x change in entropy).
The ΔG of a reaction would have a minimum value (zero), if the equilibrium constant is equal to 1 (that is, the concentrations of the reagent and the product are always equal).
Beta particles come from the nucleus. Electrons are found around the nucleus. Beta particles normally travel very fast out of a nucleus in a straight line. Electrons normally orbit the nucleus of an atom.