1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SOVA2 [1]
3 years ago
8

Estamos solos en el universo

Physics
2 answers:
Solnce55 [7]3 years ago
7 0
Bueno.
Aun no lo sabemos.
maxonik [38]3 years ago
4 0
¡los alienígenas son reales!
You might be interested in
Which of the following are true for acceleration?
trapecia [35]
D. Acceleration describes how the velocity changes in time.
3 0
3 years ago
Read 2 more answers
The flaming gorge bridge, in wyoming rises above a dry gulch. If you throw a rock straight out from the bridge, horizontally, an
Novosadov [1.4K]

Answer:

12.495m/s

Explanation:

Horizontal displacement is the range of the projectile motion.

The range is expressed as;

R = 2U/g

U is the speed at which the rock is thrown (initial speed)

g is the acceleration due to gravity.

Given

R = 255cm = 2.55m

g = 9.8m/s²

Required

Speed U

Substitute the given parameters into the formula as shown;

2.55 = 2U/9.8

Cross multiply

2U = 2.55×9.8

2U = 24.99

U = 24.99/2

U = 12.495m/s

Hence the speed that you thew the rock is 12.495m/s

7 0
3 years ago
What is the difference between longitudinal and transverse waves?
Greeley [361]
Transverse Waves: Displacement of the medium is perpendicular to the direction of propagation of the wave. ... Longitudinal Waves: Displacement of the medium is parallel to the direction of propagation of the wave.
3 0
3 years ago
Show that rigid body rotation near the Galactic center is consistent with a spherically symmetric mass distribution of constant
irakobra [83]

To solve this problem we will use the concepts related to gravitational acceleration and centripetal acceleration. The equality between these two forces that maintains the balance will allow to determine how the rigid body is consistent with a spherically symmetric mass distribution of constant density. Let's start with the gravitational acceleration of the Star, which is

a_g = \frac{GM}{R^2}

Here

M = \text{Mass inside the Orbit of the star}

R = \text{Orbital radius}

G = \text{Universal Gravitational Constant}

Mass inside the orbit in terms of Volume and Density is

M =V \rho

Where,

V = Volume

\rho =Density

Now considering the volume of the star as a Sphere we have

V = \frac{4}{3} \pi R^3

Replacing at the previous equation we have,

M = (\frac{4}{3}\pi R^3)\rho

Now replacing the mass at the gravitational acceleration formula we have that

a_g = \frac{G}{R^2}(\frac{4}{3}\pi R^3)\rho

a_g = \frac{4}{3} G\pi R\rho

For a rotating star, the centripetal acceleration is caused by this gravitational acceleration.  So centripetal acceleration of the star is

a_c = \frac{4}{3} G\pi R\rho

At the same time the general expression for the centripetal acceleration is

a_c = \frac{\Theta^2}{R}

Where \Theta is the orbital velocity

Using this expression in the left hand side of the equation we have that

\frac{\Theta^2}{R} = \frac{4}{3}G\pi \rho R^2

\Theta = (\frac{4}{3}G\pi \rho R^2)^{1/2}

\Theta = (\frac{4}{3}G\pi \rho)^{1/2}R

Considering the constant values we have that

\Theta = \text{Constant} \times R

\Theta \propto R

As the orbital velocity is proportional to the orbital radius, it shows the rigid body rotation of stars near the galactic center.

So the rigid-body rotation near the galactic center is consistent with a spherically symmetric mass distribution of constant density

6 0
3 years ago
Which of these is an example of a mechanical wave
anastassius [24]
Some of the most common examples of mechanical waves are water waves, sound waves, and seismic waves. There are three types of mechanical waves: transverse waves, longitudinal waves, and surface waves.
6 0
3 years ago
Other questions:
  • Use the ratio version of Kepler’s third law and the orbital information of Mars to determine Earth’s distance from the Sun. Mars
    5·2 answers
  • A planet orbits a star, in a year of length 2.35 x 107 s, in a nearly circular orbit of radius 3.49 x 1011 m. With respect to th
    12·1 answer
  • The bullet starts at rest in the gun. An 8.6 g bullet leaves the muzzle of a rifle with a speed of 430.1 m/s. What constant forc
    5·1 answer
  • On June 9, 1983, the lower part of the Variegated Glacier in Alaska was observed to be moving at a rate of 64 m per day. What is
    8·1 answer
  • True or False: How much we weigh on Earth is a direct result of the force of the Earth's gravity.
    5·2 answers
  • While traveling on a horizontal road at speed vi, a driver sees a large rabbit ahead and slams on the brakes. The wheels lock an
    11·1 answer
  • When does the moon lie between earth and sun
    12·2 answers
  • Complete the statement below with the correct term.
    5·2 answers
  • The bulk of geologic evidence indicates that the Earth's crust has been formed by unique, rapid ————- processes
    14·1 answer
  • Why red is the longest wavelength?​
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!